Home
Class 12
MATHS
If Delta1=|{:(1,1,1),(a,b,c),(a^2,b^2,c^...

If `Delta_1=|{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}|` and `Delta_2=|{:(1,bc,a),(1,ac,b),(1,ab,c):}|` then : -

A

`Delta_1=Delta_2`

B

`Delta_1=2Delta_2`

C

`Delta_1+Delta_2=0`

D

`Delta_1+2Delta_2=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and then check the relationships between them. ### Step 1: Evaluate \( \Delta_1 \) Given: \[ \Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} \] We can use the properties of determinants to simplify this. We will expand the determinant along the first row. \[ \Delta_1 = 1 \cdot \begin{vmatrix} b & c \\ b^2 & c^2 \end{vmatrix} - 1 \cdot \begin{vmatrix} a & c \\ a^2 & c^2 \end{vmatrix} + 1 \cdot \begin{vmatrix} a & b \\ a^2 & b^2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} b & c \\ b^2 & c^2 \end{vmatrix} = bc^2 - b^2c \) 2. \( \begin{vmatrix} a & c \\ a^2 & c^2 \end{vmatrix} = ac^2 - a^2c \) 3. \( \begin{vmatrix} a & b \\ a^2 & b^2 \end{vmatrix} = ab^2 - a^2b \) Putting it all together: \[ \Delta_1 = (bc^2 - b^2c) - (ac^2 - a^2c) + (ab^2 - a^2b) \] \[ = bc^2 - b^2c - ac^2 + a^2c + ab^2 - a^2b \] ### Step 2: Evaluate \( \Delta_2 \) Given: \[ \Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ac & b \\ 1 & ab & c \end{vmatrix} \] Again, we will expand this determinant along the first row. \[ \Delta_2 = 1 \cdot \begin{vmatrix} ac & b \\ ab & c \end{vmatrix} - 1 \cdot \begin{vmatrix} bc & a \\ ab & c \end{vmatrix} + 1 \cdot \begin{vmatrix} bc & a \\ ac & b \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} ac & b \\ ab & c \end{vmatrix} = ac^2 - ab^2 \) 2. \( \begin{vmatrix} bc & a \\ ab & c \end{vmatrix} = bca - a^2b \) 3. \( \begin{vmatrix} bc & a \\ ac & b \end{vmatrix} = b^2c - a^2c \) Putting it all together: \[ \Delta_2 = (ac^2 - ab^2) - (bca - a^2b) + (b^2c - a^2c) \] \[ = ac^2 - ab^2 - bca + a^2b + b^2c - a^2c \] ### Step 3: Check if \( \Delta_1 + \Delta_2 = 0 \) Now we need to find \( \Delta_1 + \Delta_2 \) and check if it equals zero. From our previous calculations: \[ \Delta_1 + \Delta_2 = (bc^2 - b^2c - ac^2 + a^2c + ab^2 - a^2b) + (ac^2 - ab^2 - bca + a^2b + b^2c - a^2c) \] Combining like terms: - The \( ac^2 \) and \( -ac^2 \) cancel. - The \( ab^2 \) and \( -ab^2 \) cancel. - The \( -b^2c \) and \( b^2c \) cancel. - The \( -bca \) remains. - The \( a^2c \) and \( -a^2c \) cancel. - The \( a^2b \) and \( -a^2b \) cancel. Thus, we find: \[ \Delta_1 + \Delta_2 = -bca + bca = 0 \] ### Conclusion Therefore, we conclude that: \[ \Delta_1 + \Delta_2 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1) = |(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|, Delta_(2) = |(1,bc,a),(1,ca,b),(1,ab,c) | , then

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

If Delta_(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then Delta_(1)-Delta_(2) equual

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

If (a_(1)//x)+(b_(1)//y)=c_(1),(a_(2)//x)+(b_(2)//y)=c_(2) Delta_(1)=|{:(a_(1),b_(1)),(a_(2),b_(2)):}|,Delta_(2)=|{:(b_(1),c_(1)),(b_(2),c_(2)):}|," "Delta_(3)=|{:(c_(1),a_(1)),(c_(2),a_(2)):}| , then (x, y) is equal to which one of the following ?

Let Delta_1=|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}| , Delta_2=|{:(6a_,1,2a_2,2a_3),(3b_1,b_2,b_3),(12c_1, 4c_2,4c_3):}| and Delta_3=|{:(3a_1+b_1 , 3a_2+b_2 , 3a_3+b_3),(3b_1,3b_2,3b_3),(3c_1,3c_2,3c_3):}| then Delta_3-Delta_2=kDelta_1 , find k.

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then