Home
Class 12
MATHS
Let ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(...

Let `ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(2ab,1-a^2+b^2, 2a),(2b,-2a,1-a^2-b^2):}|` then the minimum value of `Delta` is :

A

3

B

9

C

27

D

81

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the determinant \( \Delta \) given that \( ab = 1 \), we will follow these steps: ### Step 1: Write the Determinant Given the determinant: \[ \Delta = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \] ### Step 2: Apply Row Operations We will perform row operations to simplify the determinant. Let's apply the operation \( R_1 \to R_1 + bR_3 \): \[ R_1 = (1 + a^2 - b^2 + 2b^2, 2ab - 2ab, 2a - 2b + b(1 - a^2 - b^2)) \] This results in: \[ \Delta = \begin{vmatrix} 1 + a^2 + b^2 & 0 & 2a - 2b + b(1 - a^2 - b^2) \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \] ### Step 3: Simplify the Rows Next, we simplify the second row by performing \( R_2 \to R_2 - aR_3 \): \[ R_2 = (2ab - 2ab, 1 - a^2 + b^2 + 2a, 2a - a(1 - a^2 - b^2)) \] This results in: \[ \Delta = \begin{vmatrix} 1 + a^2 + b^2 & 0 & 2a - 2b + b(1 - a^2 - b^2) \\ 0 & 1 + a^2 + b^2 & 0 \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \] ### Step 4: Factor Out Common Terms Notice that \( 1 + a^2 + b^2 \) is common in the second row: \[ \Delta = (1 + a^2 + b^2) \begin{vmatrix} 1 + a^2 + b^2 & 0 & 2a - 2b + b(1 - a^2 - b^2) \\ 0 & 1 & 0 \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \] ### Step 5: Expand the Determinant Now, we can expand the determinant along the first row: \[ \Delta = (1 + a^2 + b^2) \cdot (1) \cdot \begin{vmatrix} 1 - a^2 - b^2 & 0 \\ 2b & -2a \end{vmatrix} \] Calculating this determinant gives: \[ \Delta = (1 + a^2 + b^2)(-2a(1 - a^2 - b^2)) \] ### Step 6: Substitute \( ab = 1 \) Since \( ab = 1 \), we can express \( b \) in terms of \( a \): \[ b = \frac{1}{a} \] Now substitute \( b \) into the expression for \( \Delta \): \[ \Delta = (1 + a^2 + \frac{1}{a^2})(-2a(1 - a^2 - \frac{1}{a^2})) \] ### Step 7: Find the Minimum Value To minimize \( \Delta \), we need to analyze the expression: \[ 1 + a^2 + \frac{1}{a^2} \geq 3 \quad \text{(by AM-GM inequality)} \] Thus, the minimum occurs when \( a = 1 \) (and hence \( b = 1 \)): \[ \Delta_{\text{min}} = 3^3 = 27 \] ### Final Answer The minimum value of \( \Delta \) is: \[ \boxed{27} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Find the value |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

|[2ab,a^2,b^2] , [a^2,b^2,2ab] , [b^2,2ab,a^2]|=-(a^3+b^3)^2

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then