Home
Class 12
MATHS
If A,B,C are the angles of triangle ABC,...

If A,B,C are the angles of triangle ABC, then the minimum value of `|{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}|` is equal to :

A

0

B

`-1`

C

1

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the determinant \[ D = \begin{vmatrix} -2 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix} \] we will follow these steps: ### Step 1: Expand the Determinant We will use the formula for the determinant of a 3x3 matrix. The determinant can be expanded as follows: \[ D = -2 \begin{vmatrix} -1 & \cos A \\ \cos A & -1 \end{vmatrix} - \cos C \begin{vmatrix} \cos C & \cos A \\ \cos B & -1 \end{vmatrix} + \cos B \begin{vmatrix} \cos C & -1 \\ \cos B & \cos A \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} -1 & \cos A \\ \cos A & -1 \end{vmatrix} = (-1)(-1) - (\cos A)(\cos A) = 1 - \cos^2 A = \sin^2 A \] 2. For the second determinant: \[ \begin{vmatrix} \cos C & \cos A \\ \cos B & -1 \end{vmatrix} = (\cos C)(-1) - (\cos A)(\cos B) = -\cos C - \cos A \cos B \] 3. For the third determinant: \[ \begin{vmatrix} \cos C & -1 \\ \cos B & \cos A \end{vmatrix} = (\cos C)(\cos A) - (-1)(\cos B) = \cos C \cos A + \cos B \] ### Step 3: Substitute Back into the Determinant Now substituting these back into the determinant expression: \[ D = -2 \sin^2 A + \cos C (\cos C + \cos A \cos B) + \cos B (\cos C \cos A + \cos B) \] ### Step 4: Simplify the Expression After simplifying, we get: \[ D = -2 \sin^2 A + \cos^2 C + \cos C \cos A \cos B + \cos B \cos C \cos A + \cos^2 B \] ### Step 5: Use Trigonometric Identities Using the identity \(\sin^2 A + \cos^2 A = 1\), we can express \(\sin^2 A\) in terms of \(\cos^2 A\): \[ D = -2(1 - \cos^2 A) + \cos^2 C + 2 \cos A \cos B + \cos^2 B \] ### Step 6: Find the Minimum Value To find the minimum value, we can analyze the expression. The minimum value occurs when \(\sin^2 A\), \(\cos^2 B\), and \(\cos^2 C\) take their minimum values. Since \(\sin^2 A\) can be 0 and \(\cos^2 A\), \(\cos^2 B\), and \(\cos^2 C\) can also be 0, we can substitute these values into the expression: \[ D_{min} = -2(0) + 0 + 0 + 0 = -2 \] Thus, the minimum value of the determinant is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If A, B and C denote the angles of a triangle, then Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)| is independent of

If A,B and C are the angles of a triangle, then |[-1+cos B, cos C+ cos B, cos B],[cos C+ cos A,-1+cos A, cos A],[-1+cos B,-1+cos A,-1]|

If A,B,C are the angles of a triangle ABC that cos((3A+2B+C)/(2))+cos((A-C)/(2))=

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In a Delta ABC,(cos A cos B)/(ab)+(cos B cos C)/(bc)+(cos C cos A)/(ca) is equal to

In any triangle ABC, prove that following: a(cos B cos C+cos A)=b(cos C cos A+cos B)=c(cos A cos B+cos C)

If cos A+cos B+2cos C=2, then the sides of triangle ABC are in

In triangle ABC , prove that (1) a=b cos C+c cos B (2) b=a cos C+c cos A .