Home
Class 12
MATHS
if a,b and c are the roots of the equati...

if a,b and c are the roots of the equation `x^3+2x^2+1=0`, find `|{:(a,b,x),(b,c,a),(c,a,b):}|`

A

8

B

`-8`

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant of the matrix formed by the roots \(a\), \(b\), and \(c\) of the polynomial equation \(x^3 + 2x^2 + 1 = 0\). The matrix is given as: \[ \begin{vmatrix} a & b & x \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 1: Identify the Roots The roots \(a\), \(b\), and \(c\) can be determined using Vieta's formulas from the polynomial \(x^3 + 2x^2 + 0x + 1 = 0\). According to Vieta's formulas: - \(a + b + c = -\frac{\text{coefficient of } x^2}{\text{coefficient of } x^3} = -2\) - \(ab + bc + ca = \frac{\text{coefficient of } x}{\text{coefficient of } x^3} = 0\) - \(abc = -\frac{\text{constant term}}{\text{coefficient of } x^3} = -1\) ### Step 2: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ D = \begin{vmatrix} a & b & x \\ b & c & a \\ c & a & b \end{vmatrix} \] Using the determinant formula: \[ D = a \begin{vmatrix} c & a \\ a & b \end{vmatrix} - b \begin{vmatrix} b & a \\ c & b \end{vmatrix} + x \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2 \) 2. \( \begin{vmatrix} b & a \\ c & b \end{vmatrix} = bb - ac = b^2 - ac \) 3. \( \begin{vmatrix} b & c \\ c & a \end{vmatrix} = ba - c^2 \) Substituting these back into the determinant expression: \[ D = a(cb - a^2) - b(b^2 - ac) + x(ba - c^2) \] Expanding this gives: \[ D = acb - a^3 - b^3 + abc + x(ba - c^2) \] ### Step 3: Substitute Roots into the Determinant Now we substitute \(x = a\), \(x = b\), and \(x = c\) into the determinant expression. 1. For \(x = a\): \[ D_a = abc - a^3 - b^3 + abc + a(ba - c^2) \] 2. For \(x = b\): \[ D_b = abc - a^3 - b^3 + abc + b(ba - c^2) \] 3. For \(x = c\): \[ D_c = abc - a^3 - b^3 + abc + c(ba - c^2) \] ### Step 4: Final Calculation Using the values from Vieta's: - \(abc = -1\) - \(a + b + c = -2\) - \(ab + ac + bc = 0\) We can simplify the determinant. The final value of the determinant can be calculated as follows: \[ D = 3abc - (a^3 + b^3 + c^3) \] Using the identity \(a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc)\), we can find \(D\). After substituting the values, we find: \[ D = 8 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If a,b and c are the roots of the equation x^(3)+2x^(2)+1=0, find det[[a,b,cb,c,ac,a,b]]

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a ,b, c],[ b ,c, a],[ c, a, b]|=0

If a,b are the roots of the equation x^(2)+x+1=0, thn a^(2)+b^(2)= a.1b.2c-1d.3

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

If a,b,c, in R, find the number of real root of the equation |{:(x,c,-b),(-c,x,a),(b,-a,x):}| =0

If a ,\ b ,\ c are roots of the equation x^3+p x+q=0 , prove that |a b c b c a c a b|=0 .

If a, b, c are the roots of the equation x^3-12x^2+39x-21=0 then find the value of the determinant |[a, b-c, c+b] , [ a+c, b, c-a] , [a-b, b+a, c]|