Home
Class 12
MATHS
Let Delta=|{:(a,a+b,a+3d),(a+d,a+2d,a),(...

Let `Delta=|{:(a,a+b,a+3d),(a+d,a+2d,a),(a+2d, a, a+d):}|` then :

A

`Delta` depends on a

B

`Delta` depends on d

C

`Delta` is independent of a,d

D

`Delta=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} a & a+b & a+3d \\ a+d & a+2d & a \\ a+2d & a & a+d \end{vmatrix} \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} a & a+b & a+3d \\ a+d & a+2d & a \\ a+2d & a & a+d \end{vmatrix} \] ### Step 2: Simplify the Determinant We can simplify the determinant by subtracting the first column from the second and third columns: \[ \Delta = \begin{vmatrix} a & (a+b-a) & (a+3d-a) \\ a+d & (a+2d - (a+d)) & (a - (a+d)) \\ a+2d & (a - (a+2d)) & (a+d - (a+2d)) \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} a & b & 3d \\ a+d & d & -d \\ a+2d & -2d & -d \end{vmatrix} \] ### Step 3: Factor Out Common Terms We can factor out \( d \) from the second and third columns: \[ \Delta = d \begin{vmatrix} a & b & 3 \\ a+d & 1 & -1 \\ a+2d & -2 & -1 \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we compute the determinant: \[ \Delta = d \left( a \begin{vmatrix} 1 & -1 \\ -2 & -1 \end{vmatrix} - b \begin{vmatrix} a+d & -1 \\ a+2d & -1 \end{vmatrix} + 3 \begin{vmatrix} a+d & 1 \\ a+2d & -2 \end{vmatrix} \right) \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ -2 & -1 \end{vmatrix} = (1)(-1) - (-1)(-2) = -1 - 2 = -3 \) 2. \( \begin{vmatrix} a+d & -1 \\ a+2d & -1 \end{vmatrix} = (a+d)(-1) - (-1)(a+2d) = -a - d + a + 2d = d \) 3. \( \begin{vmatrix} a+d & 1 \\ a+2d & -2 \end{vmatrix} = (a+d)(-2) - (1)(a+2d) = -2a - 2d - a - 2d = -3a - 4d \) Putting it all together: \[ \Delta = d \left( a(-3) - b(d) + 3(-3a - 4d) \right) \] \[ = d \left( -3a - bd - 9a - 12d \right) \] \[ = d \left( -12a - bd - 12d \right) \] ### Step 5: Final Expression Thus, we have: \[ \Delta = -d(12a + bd + 12d) \] ### Step 6: Conclusion From the final expression, we can see that \( \Delta \) depends on \( b \) and \( d \), but not on \( a \). Therefore, the correct option is that \( \Delta \) depends on \( b \) and \( d \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),2a +d)| = 0 , then

Let A and B be two sets such that n(A)=5 a n d n(B)=2, if a , b , c , d , e are distinct and (a ,2), (b ,3), (c ,2), (d ,3), (e ,2) are in AxxB , find A and B.

Let A= {a, b, c,d} and B ={b,d,f,g} . Find A Delta B .

If "Delta"_1=|x bb a x b a a x|a n d"Delta"_2=|x b a x| are the given determinants, then "Delta"_1=3("Delta"_2)^2 b.d/(dx)("Delta"_1)=3"Delta"_2 c. d/(dx)("Delta"_1)=3("Delta"_2)^2 d. "Delta"_1=3"Delta"2 3//2

If (2a+3b) (2c -3d) = (2a-3b) (2c+3d) then

The value of |[a,a+d,a+2d] , [a+d,a+2d,a+3d] , [a+2d,a+3d,a+4d]|+|[b,br,br^2] , [br,br^2,br^3] , [br^2,br^3,br^4]|=

Let A=([a,bc,d]) such that A^(3)=0, then a+d equals