Home
Class 12
MATHS
Let A= minimum (x^(2)-2x+7)', x inRand B...

Let A= minimum (x^(2)-2x+7)', x inRand B="Minimum"(x^(2)-2x+7),x in[2,oo),` then:

A

`log_((B-A))(A+B)` is not defined

B

`A+B=13`

C

`log_((2B-A))A lt 1`

D

`log_((2A-B))A gt 1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo), then:

Let A=Minimum(x^2-2x+7),x in R and B= Minimum(x^2-2x+7),x in [2,oo), then: (a)(log)_((B-A))(A+B) is not defined (b) A+B=13 (c)(log)_((2B-A))A<1 (d) (log)_((2A-B))A >1

If x^(2)y^(2)=1 , then minimum of x^(2)+y^(2) is

The minimum value of (x^(2)+2x+4)/(x+2) , is

The minimum value of 2x^(2)+x-1 is

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : A - B

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : A + B

The minimum value of 2x^(2) - 3x+ 2 is "____" .

Let minimum and maximum value of y=2x^(3)-15x^(2)-36x+1AA x in[0,3] is m and M. Then