Home
Class 12
MATHS
Let the diameter of a subset S of the p...

Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S.
Q. Let `S={(x,y):(sqrt(5)-1)x-sqrt(10+2sqrt(5))y ge 0, (sqrt(5)-1)x+sqrt(10+12sqrt(5)) y ge 0, x^(2)+y^(2) le 9}` then the diameter of S is :

A

`(3)/(2) (sqrt(5)-1)`

B

`3(sqrt(5)-1)`

C

`3sqrt(2)`

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VK JAISWAL|Exercise Exercise - 4 : Matching Type Problems|2 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 2 : One or More than One Answer is/are Correct|10 Videos
  • BIONMIAL THEOREM

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S. Q. Let S={(x,y):(y-x) le 0, x+y ge 0, x^(2)+y^(2) le 2} then the diameter of S is :

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

x=sqrt(2+sqrt(5))+sqrt(2-sqrt(5)) and y=sqrt(2+sqrt(5))-sqrt(2-sqrt(5)) then evaluate x^(2)+y^(2)

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

If sqrt(3)x-sqrt(2y)=sqrt(3);sqrt(5)x+sqrt(3)y=sqrt(2) then x and y are

x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) then find x^(2)+y^(2)=?

If x-(2)/(sqrt(10)-sqrt(8)),y-(2)/(sqrt(10)+2sqrt(2)) , then (x-y)^(2) =