Home
Class 12
MATHS
The exact value of "cosec"10^(@)+"cosec"...

The exact value of `"cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@)` is :

A

4

B

5

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the exact value of \( \csc 10^\circ + \csc 50^\circ - \csc 70^\circ \), we can follow these steps: ### Step 1: Rewrite the cosecant functions We know that \( \csc x = \frac{1}{\sin x} \). Therefore, we can rewrite the expression as: \[ \csc 10^\circ + \csc 50^\circ - \csc 70^\circ = \frac{1}{\sin 10^\circ} + \frac{1}{\sin 50^\circ} - \frac{1}{\sin 70^\circ} \] ### Step 2: Use the sine identity Recall that \( \sin(90^\circ - x) = \cos x \). Thus, we can express \( \sin 70^\circ \) as: \[ \sin 70^\circ = \sin(90^\circ - 20^\circ) = \cos 20^\circ \] Now, we can rewrite the expression: \[ \frac{1}{\sin 10^\circ} + \frac{1}{\sin 50^\circ} - \frac{1}{\cos 20^\circ} \] ### Step 3: Find a common denominator The common denominator for the fractions is \( \sin 10^\circ \sin 50^\circ \cos 20^\circ \). Thus, we can rewrite the expression as: \[ \frac{\sin 50^\circ \cos 20^\circ + \sin 10^\circ \cos 20^\circ - \sin 10^\circ \sin 50^\circ}{\sin 10^\circ \sin 50^\circ \cos 20^\circ} \] ### Step 4: Simplify the numerator Using the product-to-sum identities: \[ \sin A \cos B + \sin B \cos A = \sin(A + B) \] We can apply this to the terms in the numerator: \[ \sin 50^\circ \cos 20^\circ + \sin 10^\circ \cos 20^\circ = \sin(50^\circ + 20^\circ) = \sin 70^\circ \] So, the numerator simplifies to: \[ \sin 70^\circ - \sin 10^\circ \sin 50^\circ \] ### Step 5: Use the sine subtraction formula Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] We can express: \[ \sin 70^\circ - \sin 10^\circ = 2 \cos(40^\circ) \sin(30^\circ) = 2 \cos(40^\circ) \cdot \frac{1}{2} = \cos(40^\circ) \] ### Step 6: Substitute back into the expression Now, we substitute back into our expression: \[ \frac{\cos(40^\circ) - \sin 10^\circ \sin 50^\circ}{\sin 10^\circ \sin 50^\circ \cos 20^\circ} \] ### Step 7: Simplify further Using \( \sin 50^\circ = \cos 40^\circ \): \[ \frac{\cos(40^\circ) - \sin 10^\circ \cos 40^\circ}{\sin 10^\circ \cos 40^\circ \cos 20^\circ} = \frac{\cos(40^\circ)(1 - \sin 10^\circ)}{\sin 10^\circ \cos 40^\circ \cos 20^\circ} \] This simplifies to: \[ \frac{1 - \sin 10^\circ}{\sin 10^\circ \cos 20^\circ} \] ### Step 8: Evaluate the final expression Using the known values, we can evaluate this expression. Notably, \( \sin 30^\circ = \frac{1}{2} \) leads us to: \[ \csc 30^\circ = 2 \] Thus, the final value is: \[ \frac{3}{\sin 30^\circ} = 6 \] ### Final Answer The exact value of \( \csc 10^\circ + \csc 50^\circ - \csc 70^\circ \) is **6**.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

Find the exact value of cosec"10"^(@)+"cosec"50^(@)-"cosec"70^(@)

Write the value of cosec 60^(@) .

The value of csc10^(@)+csc50^(@)-csc70^(@) is

The value of (1+sec20^(@)+cot70^(@))(1-"cosec"20^(@)+tan70^(@)) is equal to

The value of "cosec"^(-1)("cosec"(4pi)/3) is

sec70^(@)sin20^(@)+cos20^(@)"cosec"70^(@)=?

Find the value of "cosec"70^(@)-sec20^(@)

Find the value of cosec(1020^(@))=cosec(3xx360^(@)-60^(@)) =-cosec60^(@)=-(2)/(sqrt(3))

VK JAISWAL-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The exact value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is :

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y=cosectheta+cot theta,then Find y-x-xy...

    Text Solution

    |

  16. If cos18^(@)-sin18^(@)=sqrt(x)sin27^(@), then x=

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  20. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |