Home
Class 12
MATHS
Consider a triangle ABC such that cotA+...

Consider a triangle ABC such that `cotA+cotB+cotC=cot theta`. Now answer the following :
Q. `sin(A-theta)sin(B-theta) sin(C-theta)=`:

A

`tan^(3)theta`

B

`cot^(3)theta`

C

`sin^(3)theta`

D

`cos^(3)theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

Prove that following 3sin theta-sin3 theta=(4sin theta)/(1+cot^(2)theta)

If A + B + C = pi then show that cot theta = cot A + cot B + cot C ⇔ sin(A - theta) * sin(B - theta)* sin(C - theta) = sin3theta .

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

if 5cot theta=4, then the value of ((5sin theta-3cos theta)/(sin theta+2cos theta))

If cot theta = (3)/(4) , then (sin theta - cos theta)/(sin theta + cos theta) =