Home
Class 12
MATHS
Sum the series : tan^(- 1)(4/(1+3.4))+ta...

Sum the series : `tan^(- 1)(4/(1+3.4))+tan^(- 1)(6/(1+8.9))+tan^(- 1)(8/(1+15.16))+............oo` is :

A

`cot^(-1)(2)`

B

`tan^(-1)(2)`

C

`(pi)/(2)`

D

`(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((3)/(4))+tan^(-1)((3)/(5))-tan^(-1)((8)/(19))=

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^(-1)((1)/(2))

tan^(-1) (1/5) + tan^(-1) (1/8) =

tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)(1)/(2)

"tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(3^(3))) + ....oo is equal to

Find the sum of the series : (tan^(-1))(1)/(3)+(tan^(-1))(2)/(9)+...+(tan^(-1))(2^(n-1))/(1+2^(2n-1))+......oo

tan^(-1)(1/7)+tan^(-1)(1/9)+tan^(-1)(1/8)

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is: