Home
Class 12
MATHS
Domain (D) and range (R ) of f(x)=sin^...

Domain (D) and range (R ) of `f(x)=sin^(-1)(cos^(-1)[x])` where [ ] denotes the greatest integer function is

A

`D-=[1, 2), R-={0}`

B

`D-=[0,1), R-={-1, 0,1}`

C

`D-=[-1, 1), R-={0, (pi)/(2), pi}`

D

`D-=[-1,1], R-={-(pi)/(2), 0, (pi)/(2)}`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sin^(-1)(log[x])+log(sin^(-1)[x]), where [.] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

Solution set of [sin^(-1)x]>[cos^(-1)x]. where [*] denotes greatest integer function

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).