Home
Class 12
MATHS
The sum of the series cot^(-1)((9)/(2))...

The sum of the series `cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo` is equal to :

A

`cot^(-1)(2)`

B

`cot^(-1)(3)`

C

`cot^(-1)(-1)`

D

`cot^(-1)(1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+cot^(-1)((39)/(4))....oo

The sum of cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+cot^(-1)((39)/(4))+cot^(-1)((67)/(4))..... oo is equal to :

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

The sum of the series cot^(-1)2+cot^(-1)8+cot^(-1)18+cot^(-1)32.........

If the sum of first 16 terms of the series s=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+ up to terms is cot^(-1)((1+2^(n))/(2(2^(16)-1))), then find the value of n.

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The sum to infinite terms of the series cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+