Home
Class 12
MATHS
The number of real values of x satisfyin...

The number of real values of x satisfying `tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3)))=(3pi)/(4)` is :

A

0

B

1

C

2

D

infinitely many

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3))) is

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

The number of real values of x satisfying tan^(-1)((x)/(x+2))+(pi)/(2)=tan^(-1)2x^(2)+cot^(-1)((x)/(x+4))

If tan^(-1)((x-3)/(x-4))+tan^(-1)((x+3)/(x+4))=(pi)/(4)

tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=(pi)/(4) , |x| lt 1

Considering only the principal values of inverse trigonometric functions,the number of positive real values of "x" satisfying tan^(-1)(x)+tan^(-1)(2x)=(pi)/(4) is

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4) ,