Home
Class 12
MATHS
Range of the function f(x)=cot^(-1){-x}+...

Range of the function `f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x}`, where `{*}` denotes fractional part function

A

`((3pi)/(4), pi)`

B

`[(3pi)/(4), pi)`

C

`[(3pi)/(4), pi]`

D

`((3pi)/(4), pi]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

range of the function f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

find the range of the function f(x)=(1)/(2{-x})-{x} occurs at x equals where {.} represents the fractional part functional

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

let f(x)=(cos^(-1)(1-{x})sin^(-1)(1-{x}))/(sqrt(2{x}(1-{x}))) where {x} denotes the fractional part of x then

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.