Home
Class 12
MATHS
A solution of the equation cot^(-1)2=co...

A solution of the equation `cot^(-1)2=cot^(-1)x+cot^(-1)(10-x)" where " 1 lt x lt 9` is :

A

7

B

3

C

2

D

5

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-4 : Matching Type Problems|4 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

x cot^(-1)x

cot(tan^(-1)x+cot^(-1)x)

Find the solution of the equation tan^(-1)x-cot^(-1)x=tan^(-1)((1)/(sqrt(3)))

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

if cot^(-1)alpha+cot^(-1)beta=cot^(-1)x then x

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

tan^(-1)(cot x)+cot^(-1)(tan x)

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

The complete solution set of the inequality [cot^(-1)x]^(2)-6[cot^(-1)x]+9<=0 where [1] denotes greatest integer function,is