Home
Class 12
MATHS
The value of x satisfying the equation ...

The value of x satisfying the equation
`(sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16)` is :

A

`"cos"(pi)/(5)`

B

`"cos"(pi)/(4)`

C

`"cos"(pi)/(8)`

D

`"cos"(pi)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-4 : Matching Type Problems|4 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)( sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) can not be equal to :

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Solve cos^(-1)(sin(cos^(-1)x))=(pi)/(3)

A value of x satisfying the equation "sin"[cot^(-1)(1+x)]="cos"["tan"^(-1)x] is:

The value of x satisfying sin^(-1)x+sin^(-1)(1x)=cos^(1)x are

An extremum value of the function f(x)=(sin^(-1)x)^(3)+(cos^(-1)x)^(3)(-1<=x<=1) is

The number of roots of the equation sin^(-1)x-cos^(-1)x=sin^(-1)(5x-3) is/ are

What are the values of (x,y) satisfying the simultaneous equations sin^(-1)x+sin^(-1)y=(2pi)/(3) and cos^(-1)x-cos^(-1)y=(pi)/(3) ?

The set of values of x satisfying |sin^(-1)x|<|cos^(-1)x|, is