Home
Class 12
MATHS
If e^(A) is defined as e^(A)=I+A+A^(2)/(...

If `e^(A)` is defined as `e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))]`, where `A=[(x,x),(x,x)], 0 lt x lt 1` and I is identity matrix, then find the functions f(x) and g(x).

Text Solution

AI Generated Solution

To solve the problem, we need to find the functions \( f(x) \) and \( g(x) \) given that: \[ e^{A} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots = \frac{1}{2} \begin{pmatrix} f(x) & g(x) \\ g(x) & f(x) \end{pmatrix} \] where \( A = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \) and \( 0 < x < 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix and e^(a) is defined as e^(A)=1+(A^(2))/(2!)+(A^(3))/(3!)............oo=(1)/(2)[f(x),g(x) and g(x),f(x)] where A=[[x,xx,x]] and I being the identity matrix then int(g(x))/(f(x))dx=

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

g(x) is a inverse function of f(x) find f'(x)?y=x^(3)+e^((x)/(2))

g(x) is a inverse function of f.g(x)=x^(3)+e^((x)/(2)) then find the value of f'(x)

CENGAGE-MATRICES-Solved Examples And Exercises
  1. If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),...

    Text Solution

    |

  2. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  3. If both A-1/2Ia n dA+1/2 are orthogonal matices, then (a)A is ortho...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |adj(adjA)| is (...

    Text Solution

    |

  5. If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^...

    Text Solution

    |

  6. If A is a nilpotent matrix of index 2, then for any positive integer n...

    Text Solution

    |

  7. If Aa n dB are two matrices such that A B=Ba n dB A=A ,t h e n (A^5-B...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals A^T b. A c. A^2 d. non...

    Text Solution

    |

  10. If A^2=1, then the value of det(A-I) is (where A has order 3) 1 b. -1 ...

    Text Solution

    |

  11. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  12. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  13. If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an ident...

    Text Solution

    |

  14. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  15. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  16. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  18. Let A=[[3x^2], [1], [6x]],B=[a,b,c]and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  20. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  21. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |