Home
Class 12
MATHS
Prove that matrix [((b^(2)-a^(2))/(a^(2)...

Prove that matrix `[((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))]` is orthogonal.

Text Solution

Verified by Experts

`A=[((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))]=[((1-a^(2)/b^(2))/(1+a^(2)/b^(2)),(-2 a/b)/(1+a^(2)/b^(2))),((-2a/b)/(1+a^(2)/b^(2)),-(1-a^(2)/(2))/(1+a^(2)/b^(2)))]`
`=[(cos 2 theta,-sin 2 theta),(-sin 2 theta,-cos 2 theta)]`, where `a/b= tan theta`
`:. A A^(T)=[(cos 2 theta,-sin 2 theta),(-sin 2 theta,-cos 2 theta)][(cos 2 theta,-sin 2 theta),(- sin 2 theta,-cos 2 theta)]`
`=[(1,0),(0,1)]`
Thus, A is orthogonal.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

(a^(2)+2ab+b^(2))/(a+b)

(a ^ (2) -b ^ (2)) / (ab) - (a ^ (3) -b ^ (3)) / (a ^ (2) -b ^ (2))

Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2)):}|=-(a^(3)+b^(3))^(2) .

solve: (a^(2) + b^(2) + 2ab) - (a^(2) + b^(2) - 2ab)

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

Prove that det[[a^(2),2ab,b^(2)b^(2),a^(2),2ab2ab,b^(2),a^(2)]]=(a^(3)+b^(3))^(2)

CENGAGE-MATRICES-Solved Examples And Exercises
  1. Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),...

    Text Solution

    |

  2. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  3. If both A-1/2Ia n dA+1/2 are orthogonal matices, then (a)A is ortho...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |adj(adjA)| is (...

    Text Solution

    |

  5. If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^...

    Text Solution

    |

  6. If A is a nilpotent matrix of index 2, then for any positive integer n...

    Text Solution

    |

  7. If Aa n dB are two matrices such that A B=Ba n dB A=A ,t h e n (A^5-B...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals A^T b. A c. A^2 d. non...

    Text Solution

    |

  10. If A^2=1, then the value of det(A-I) is (where A has order 3) 1 b. -1 ...

    Text Solution

    |

  11. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  12. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  13. If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an ident...

    Text Solution

    |

  14. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  15. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  16. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  18. Let A=[[3x^2], [1], [6x]],B=[a,b,c]and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  20. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  21. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |