Home
Class 12
MATHS
If A=[costhetasintheta-sinthetacostheta]...

If `A=[costhetasintheta-sinthetacostheta]`, then prove that `A^n=[cosnthetasinntheta-sinnthetacosntheta], n in N`.

Text Solution

Verified by Experts

Let `P(n) equiv A^(n)=[(cos n theta,sin n theta),(-sin n theta,cos n theta)]`
For `n=1, A^(1)=[(cos theta ,sin theta),(-sin theta,cos theta)]`
For `n=2, A^(2)=AxxA`
`=[(cos theta,sin theta),(-sin theta,cos theta)][(cos theta,sin theta),(-sin theta,cos theta)]`
`=[(cos^(2) theta-sin^(2) theta,cos theta sin theta+sin theta cos theta),(-sin theta cos theta-cos theta sin theta,-sin^(2) theta+cos^(2) theta)]`
`=[(cos 2 theta,2 sin theta cos theta),(-2 sin theta cos theta,cos 2 theta)]`
`=[(cos 2 theta,sin 2 theta),(-si 2 theta,cos 2 theta)]`
Thus, P(n) is true `n=1` and `n=2`.
Let P(n) be true for some `n=k`.
`:. A^(k)=[(cos k theta,sin k theta),(-sin k theta,cos k theta)]`
`:. A^(k+1)=A^(k)A`
`=[(cos k theta,sin k theta),(-sin k theta,cos k theta)][(cos theta,sin theta),(- sin theta,cos theta)]`
`=[(cos k theta cos theta - sin k theta sin theta,cos k theta sin theta +sin k theta cos theta),(-sin k theta cos theta - cos k theta sin theta,-sin k theta sin theta + cos k theta cos theta)]`
`=[(cos(k+1)theta,sin (k+1) theta),(-sin (k+1) theta,cos (k+1) theta)]`
Thus, P(n) is true for `n=k+1` also.
Hence, P(n) is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix [costhetasintheta-sinthetacostheta] .

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

Prove that 2^(n)>n,n in N

Prove that P(n,n)=2.P(n,n-2)

Prove that: n!(n+2)=n!+(n+1)!

Prove that [n+1/2]^(n)>(n!)

If A=[1101], prove that A^(n)=[1n01] for all positive integers n.

Prove that n!(n+2)=n!+(n+1)!

Prove that quad 2^(n)>n for all positive integers n.

Using mathematical induction prove that : (d)/(dx)(x^(n))=nx^(n-1)f or backslash all n in N

CENGAGE-MATRICES-Solved Examples And Exercises
  1. If A=[costhetasintheta-sinthetacostheta], then prove that A^n=[cosnthe...

    Text Solution

    |

  2. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  3. If both A-1/2Ia n dA+1/2 are orthogonal matices, then (a)A is ortho...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |adj(adjA)| is (...

    Text Solution

    |

  5. If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^...

    Text Solution

    |

  6. If A is a nilpotent matrix of index 2, then for any positive integer n...

    Text Solution

    |

  7. If Aa n dB are two matrices such that A B=Ba n dB A=A ,t h e n (A^5-B...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals A^T b. A c. A^2 d. non...

    Text Solution

    |

  10. If A^2=1, then the value of det(A-I) is (where A has order 3) 1 b. -1 ...

    Text Solution

    |

  11. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  12. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  13. If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an ident...

    Text Solution

    |

  14. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  15. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  16. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  18. Let A=[[3x^2], [1], [6x]],B=[a,b,c]and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  20. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  21. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |