Home
Class 12
MATHS
Let A=[(2,1),(0,3)] be a matrix. If A^(1...

Let `A=[(2,1),(0,3)]` be a matrix. If `A^(10)=[(a,b),(c,d)]` then prove that `a+d` is divisible by 13.

Text Solution

AI Generated Solution

To solve the problem, we need to find \( A^{10} \) for the matrix \( A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \) and prove that \( a + d \) is divisible by 13, where \( A^{10} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[[2,10,3]] be a matrix.If A^(10)=[[a,bc,d]]

Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)] , then the number of divisors of (a+b+2020c+d) is equal to

Let A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)] then lim_(n to oo) (b + c)/(a + d) =

Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

If A=([1,0],[2,1]) and A^(10)=([a,b],[c,d]) then a+b+c+d

If A=[[1,0],[2,1]] and A^(2012)=[[a,b],[c,d]] then find the values of a,b,c and d.

If =(0,1)B=(1,0),C=(1,2),D=(2,1) ,prove that vec AB=vec CD

In Fig. 5.10, if A C=B D , then prove that A B=C D .

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

Let a=(72!)/((36!)^(2))-1, then (A) a is odd (B) a is divisible by 71(C) a is divisible by 73(D)a is even

CENGAGE-MATRICES-Solved Examples And Exercises
  1. Let A=[(2,1),(0,3)] be a matrix. If A^(10)=[(a,b),(c,d)] then prove th...

    Text Solution

    |

  2. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  3. If both A-1/2Ia n dA+1/2 are orthogonal matices, then (a)A is ortho...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |adj(adjA)| is (...

    Text Solution

    |

  5. If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^...

    Text Solution

    |

  6. If A is a nilpotent matrix of index 2, then for any positive integer n...

    Text Solution

    |

  7. If Aa n dB are two matrices such that A B=Ba n dB A=A ,t h e n (A^5-B...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals A^T b. A c. A^2 d. non...

    Text Solution

    |

  10. If A^2=1, then the value of det(A-I) is (where A has order 3) 1 b. -1 ...

    Text Solution

    |

  11. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  12. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  13. If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an ident...

    Text Solution

    |

  14. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  15. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  16. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  18. Let A=[[3x^2], [1], [6x]],B=[a,b,c]and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  20. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  21. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |