Home
Class 12
MATHS
If A=[-1 1 0-2] , then prove that A^2+3A...

If `A=[-1 1 0-2]` , then prove that `A^2+3A+2I=Odot` Hence, find `Ba n dC` matrices of order 2 with integer elements, if `A=B^3+C^3dot`

Text Solution

Verified by Experts

`A=[(-1,1),(0,-2)]`
`implies A^(2)=[(-1,1),(0,-2)][(-1,1),(0,-2)]=[(1,-3),(0,4)]`
`implies A^(2)+3A+2I`
`=[(1,-3),(0,4)]+3[(-1,1),(0,-2)]+2[(1,0),(0,1)]=[(0,0),(0,0)]`
`implies A^(2)+3A+2I =O` (1)
From (1), `A^(3)+3A^(2)+2A=O`
`implies (A+I)^(3)-A=I^(3)`
`implies A=(A+I)^(3)-I^(3)=(A+I)^(3)+(-I)^(3)`
`implies B=A+I` and `C=-I`
`:. B=[(-1,1),(0,-2)]+[(1,0),(0,1)]=[(0,1),(0,-1)]`
and `C=[(-1,0),(0,-1)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[[-1,10,-2]], then prove that A^(2)+3A+2I=O. Hence,find BandC matrices of order 2 with integer elements,if A=B^(3)+C^(3)

If A=[0100], prove that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is a unit matrix of order 2 and n is a positive integer.

The number of 2xx2 idempotent matrices with integer entries are (A) 1 (B) 2 (C) 3 (D) oo

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

If A=[[-1,10,-2]]=B^(3)+C^(3), where B and c are 2x2 matrices with integer elements, then- tr(B)-tr(C) must be equal to

If A=[[2,1],[3,7]] and B=[[-1,2],[3,5]] ,then prove that (AB)'=B'A'

No of symmetric matrices of order 3xx3 by using the elements of the set A={-3,-2,-1,0,1,2,3} is

If A and B are square matrices of order 3 such that |A|=1,|B|=3, then find the value of |2AB|

CENGAGE-MATRICES-Solved Examples And Exercises
  1. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  2. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  3. If both A-1/2Ia n dA+1/2 are orthogonal matices, then (a)A is ortho...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |adj(adjA)| is (...

    Text Solution

    |

  5. If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^...

    Text Solution

    |

  6. If A is a nilpotent matrix of index 2, then for any positive integer n...

    Text Solution

    |

  7. If Aa n dB are two matrices such that A B=Ba n dB A=A ,t h e n (A^5-B...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals A^T b. A c. A^2 d. non...

    Text Solution

    |

  10. If A^2=1, then the value of det(A-I) is (where A has order 3) 1 b. -1 ...

    Text Solution

    |

  11. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  12. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  13. If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an ident...

    Text Solution

    |

  14. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  15. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  16. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  18. Let A=[[3x^2], [1], [6x]],B=[a,b,c]and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  20. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  21. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |