Home
Class 12
MATHS
If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1...

If `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)]` and `P=S ("adj.A") S^(T)`, then find matrix `S^(T) P^(10) S`.

Text Solution

Verified by Experts

`S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2 sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))]`
`=[("sin "15^(@),cos 15^(@)),(-"cos "15^(@),sin 15^(@))]`
`:. SS^(T)=S^(T)S=I`
Now,
`S^(T) P^(10) S=S^(T)(S ("adj. A")S^(T))^(10)S`
`=S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(9)S`
`=I ("adj. A")S^(T) (S("adj. A")S^(T))^(9)S`
`=("adj. A")S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(8) S`
`=("adj. A")^(2)S^(T) (S("adj. A")S^(T))^(8)S`
...
...
`=("adj. A")^(10)`
`A=[(1,0),(-1,1)]`
`:.` adj. `A=[(1,0),(1,1)]`
`:. ("adj. A")^(2)=[(1,0),(1,1)][(1,0),(1,1)]=[(1,0),(2,1)]`
`:. ("adj. A")^(3)=[(1,0),(3,1)]`
And so on.
`:. ("adj. A")^(10)=[(1,0),(10,1)]=S^(T) P^(10) S`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+1)/(sqrt(3)-1)is

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

(1)/(1-sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)-sqrt(3))-(2)/(1+sqrt(2)-sqrt(3))+(3)/(sqrt(2))

1+2sqrt(3)-1sqrt(3)

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

(1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))

(-sqrt(3)/2 + sqrt(3))/(1/sqrt(2)-1)=

CENGAGE-MATRICES-Solved Examples And Exercises
  1. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  2. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  3. If both A-1/2Ia n dA+1/2 are orthogonal matices, then (a)A is ortho...

    Text Solution

    |

  4. If nth-order square matrix A is a orthogonal, then |adj(adjA)| is (...

    Text Solution

    |

  5. If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^...

    Text Solution

    |

  6. If A is a nilpotent matrix of index 2, then for any positive integer n...

    Text Solution

    |

  7. If Aa n dB are two matrices such that A B=Ba n dB A=A ,t h e n (A^5-B...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals A^T b. A c. A^2 d. non...

    Text Solution

    |

  10. If A^2=1, then the value of det(A-I) is (where A has order 3) 1 b. -1 ...

    Text Solution

    |

  11. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  12. A=[(a,1,0),(1,b,d),(1,b,c)],B=[(a,1,1),(0,d,c),(f,g,h)],U=[(f),(g),(h)...

    Text Solution

    |

  13. If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an ident...

    Text Solution

    |

  14. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  15. Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r...

    Text Solution

    |

  16. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=2,t h e n|(a d jA^(-1...

    Text Solution

    |

  18. Let A=[[3x^2], [1], [6x]],B=[a,b,c]and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  20. Let A=([a(i j)])(3xx3) be a matrix such that AA^T=4Ia n da(i j)+2c(i j...

    Text Solution

    |

  21. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |