Home
Class 12
MATHS
Solve the following equations for X and ...

Solve the following equations for X and Y :
`2X-Y=[(3,-3,0),(3,3,2)], 2Y+X=[(4,1,5),(-1,4,-4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations for matrices \( X \) and \( Y \) given by: 1. \( 2X - Y = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \) 2. \( 2Y + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \) we will follow these steps: ### Step 1: Rewrite the equations We start with the two equations as given: \[ 2X - Y = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \tag{1} \] \[ 2Y + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \tag{2} \] ### Step 2: Express \( Y \) in terms of \( X \) From equation (1), we can express \( Y \): \[ Y = 2X - \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \] ### Step 3: Substitute \( Y \) into equation (2) Now, substitute the expression for \( Y \) into equation (2): \[ 2(2X - \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix}) + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \] ### Step 4: Simplify the equation Distributing the 2 in the equation gives: \[ 4X - \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \] Combining like terms: \[ 5X - \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \] ### Step 5: Isolate \( X \) Now, we isolate \( 5X \): \[ 5X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} + \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} \] Calculating the right-hand side: \[ 5X = \begin{pmatrix} 4 + 6 & 1 - 6 & 5 + 0 \\ -1 + 6 & 4 + 6 & -4 + 4 \end{pmatrix} \] This simplifies to: \[ 5X = \begin{pmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{pmatrix} \] ### Step 6: Solve for \( X \) Now, divide both sides by 5: \[ X = \begin{pmatrix} 10/5 & -5/5 & 5/5 \\ 5/5 & 10/5 & 0/5 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \] ### Step 7: Substitute \( X \) back to find \( Y \) Now that we have \( X \), we can substitute it back into the expression for \( Y \): \[ Y = 2X - \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \] Calculating \( 2X \): \[ 2X = 2 \cdot \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & -2 & 2 \\ 2 & 4 & 0 \end{pmatrix} \] Now substituting: \[ Y = \begin{pmatrix} 4 & -2 & 2 \\ 2 & 4 & 0 \end{pmatrix} - \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \] Calculating the right-hand side: \[ Y = \begin{pmatrix} 4 - 3 & -2 + 3 & 2 - 0 \\ 2 - 3 & 4 - 3 & 0 - 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \end{pmatrix} \] ### Final Solution Thus, the matrices \( X \) and \( Y \) are: \[ X = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \end{pmatrix} \]

To solve the equations for matrices \( X \) and \( Y \) given by: 1. \( 2X - Y = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \) 2. \( 2Y + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \) we will follow these steps: ### Step 1: Rewrite the equations ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.3|10 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : 0.2x+0.3y=1.3 0.4x+0.5y=2.3

Solve the following equations using inverse of a matrix. {:(2x-y=-2),(3x+4y=3):}

Solve the following equations by reduction method : 2x - y = -2, 3x + 4y = 3

Find matrices 'X' and 'Y' if : 2X+3Y=[(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

Find X and Y ,if 2X + 3Y = [(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations by the reduction method : x + 3y = 2, 3x + 5y = 4 .