Home
Class 12
MATHS
If A=[(3,-2),(4,-1)], then find all the ...

If `A=[(3,-2),(4,-1)]`, then find all the possible values of `lambda` such that the matrix `(A-lambdaI)` is singular.

Text Solution

Verified by Experts

The correct Answer is:
`1 pm 2i`

We have
`(A-lambda I)=[(3,-2),(4,-1)]-lambda [(1,0),(0,1)]`
`=[(3-lambda,-2),(4,-1-lambda)]`
`(A-lambda I)` is singular.
`:.` det. `(A-lambda I)=0`
`implies )3-lambda) (-1-lambda)-(-2) 4=0`
`implies lambda^(2)-2lambda+5=0`.
`implies lambda=1 pm 2i`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.3|10 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

The possible values of scalar k such that the matrix A^(-1)-kI is singular where A = [(1,0,2),(0,2,1),(1,0,0)] , are

If A = [(0,1),(-1,0)] and A^2016=lambdaI , then value of lambda is

The matrix A=[{:(a,2),(2,4):}] is singular if

Find all possible values of (x^(2)+1)/(x^(2)-2)

find the real value of x for which the matrix =[(x+1,3,5),(1,x+3,5),(1,3,x+5)] is non-singular.

If [(6-x, 4),(3-x,1)] is a singular matrix then the value of x is

If the adjoint of a 3 xx 3 matrix P is [{:(,1,4,4),(,2,1,7),(,1,1,3):}] , then the possible value(s) of the determinant of P is (are)

If the adjoint of a 3xx3 matrix P is [(1, 4, 4), (2, 1, 7), (1, 1, 3)], then the possible value(s) of the determinant of P is (are)

For x in R, find all possible values of |x-3|-2 (ii) 4-|2x+3|