Home
Class 12
MATHS
The matrix R(t) is defined by R(t)=[(cos...

The matrix R(t) is defined by `R(t)=[(cos t,sin t),(-sin t,cos t)]`. Show that `R(s)R(t)=R(s+t)`.

Text Solution

Verified by Experts

`R(s)R(t)=[(cos s ,sin s),(cos t,sin t)][(cos t,sin t),(-sin t,cos t)]`
`=[(cos s cos t-sin s sin t,cos s sin t + sin s cos t),(-sin s cos t-cos s sin t,cos s cos t-sin s sin t)]`
`=[(cos(s+t),sin (s+t)),(-sin (s+t),cos (s+t))]`
`=R(s+t)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

x = a (cos t + sin t), y = a (sin t-cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

Prove that the curve represented by x=3(cos t+sin t),y=4(cos t-sin t),t in R is an ellipse

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

The displacement vector of a particle of mass m is given by r (t) = hati A cos omega t + hatj B sin omega t . (a) Show that the trajectory is an ellipse. (b) Show that F = -m omega^(2)r .

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))