Home
Class 12
MATHS
If A=[[costheta,sintheta],[-sintheta,cos...

`If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n` is

Text Solution

Verified by Experts

The correct Answer is:
Zero Matrix

`A=[(cos theta,sin theta),(-sin theta,cos theta)]`
`A^(2)=[(cos theta,sin theta),(-sin theta,cos theta)][(cos theta,sin theta),(-sin theta,cos theta)]`
`=[(cos^(2) theta-sin^(2) theta,2 sin theta cos theta),(-2 sin theta cos theta,cos^(2) theta - sin^(2) theta)]`
`=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)]`
`A^(3)=A^(2) A=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)][(cos theta,sin theta),(-sin theta,cos theta)]`
`=[(cos 3 theta,sin 3 theta),(-sin 3 theta,cos 3 theta)]`
Hence, `A^(n)=[(cos n theta,sin n theta),(-sin n theta,cos n theta)]`
or `A^(n)/n = [((cos n theta)/n,(sin n theta)/n),((-sin n theta)/n,(cos n theta)/n)]`
or `lim_(n rarr oo) A^(n)/n =[(lim_(n rarr oo) (cos n theta)/n,lim_(n rarr oo) (sin n theta)/n),(-lim_(n rarr oo) (sin n theta)/n,lim_(n rarr oo) (cos n theta)/n)]`
`=[(0,0),(0,0)]=` Zero matrix
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

If {:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim_(ntooo) 1/nA^n is

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If A=[[costheta,sintheta],[-sintheta,costheta]] and beta=A^4+A then determinant of beta=

Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1