Home
Class 12
MATHS
A and B are different matrices of order ...

A and B are different matrices of order n satisfying `A^(3)=B^(3)` and `A^(2)B=B^(2)A`. If det. `(A-B) ne 0`, then find the value of det. `(A^(2)+B^(2))`.

Text Solution

Verified by Experts

The correct Answer is:
0

`(A^(2)+B^(2))(A-B)=A^(3)-A^(2)B+B^(2)A-B^(3)=O`
`:.` det. `[(A^(2)+B^(2))(A-B)]=0`
`implies` det. `(A^(2)+B^(2))xx`det. `(A-B)=0`
`implies` det. `(A^(2)+B^(2))=0` (as det. `(A-B) ne0`)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.3|10 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A and B are different matrices satisfying A^(3) = B^(3) and A^(2) B = B^(2) A , then

If A and B are different matrices satisfying A^(3)=B^(3) and A^(2)B=B^(2)A, then which of the following is/are incorrect

A and B are square matrices of same order such that A^5=B^5 and A^2B^3=B^2A^3 . If A^2-B^2 invertible then det(A^3+B^3)=?

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det ©=5, then find the value of 10det (A^(3)B^(2)C^(-1)).

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I and det. (AB-A-2B+2I) ne 0 , then identify the correct statement(s), where I is idensity matrix of order 3.