Home
Class 12
MATHS
Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and ...

Let `A=[[2,0,7] , [0,1,0], [1,-2,1]]` and `B=[[-x,14x,7x] , [0,1,0] , [x,-4x,-2x]]` are two matrices such that `AB=(AB)^(-1)` and `AB!=I` then `Tr((AB)+(AB)^2+(AB)^3+(AB)^4+(AB)^5+(AB)^6)=`

Text Solution

Verified by Experts

The correct Answer is:
`1//5`

We have
`AB=[(5x,0,0),(0,1,0),(0,10x-2,5x)]=[(1,0,0),(0,1,0),(0,0,1)]`
`implies x=1//5`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] find AB and BA.

If A=[[2,3],[0,1]] and B=[[3,4],[2,1]] ,then (AB)=

If A=[[1/3,2],[0,2x-3]] , B=[[3,6],[0,-1]] and AB=I ,then x=

If A=[[2,5,6] , [0,1,2]], B =[[6,1] , [0,4] , [5,7]] then verify that (AB)'=B'A'

If A=[[2,3,4],[1,2,3],[-1,1,2]], B=[[1,3,0],[-1,2,1],[0,0,2]] , find AB and BA and show that AB!=BA

abs(A)=abs([2,1,-4],[1,5,0],[-2,4,7])

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[1,4],[0,5],[6,7]] and B=[[2,3,-1],[1,0,-7]] , verify that (AB)\'=B\'A\'

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

CENGAGE-MATRICES-Exercise 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta,...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. Show that the two matrices A, P^(-1) AP have the same characteristic r...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |