Home
Class 12
MATHS
For the matrix A=[3 1 7 5] , find x and ...

For the matrix `A=[3 1 7 5]` , find `x` and `y` so that `A^2+x I=y Adot`

Text Solution

Verified by Experts

The correct Answer is:
`x=y=8, A^(-1)=[(5//8,-1//8),(-7//8,3//8)]`

We have
`A=[(3,1),(7,5)]`
`A^(2)=A A=[(3,1),(7,5)][(3,1),(7,5)]`
`=[(9+7,3+5),(21+35,7+25)]=[(16,8),(56,32)]`
Now, `A^(2)+xI=yA`
`implies [(16,8),(56,32)]+x[(1,0),(0,1)]=y[(3,1),(7,5)]`
`[(16+x,8+0),(56+0,32+x)]=[(3y,y),(7y,5y)]`
`16+x=3y, y=8, 7y=56, 5y=32+x`
Putting `y=8` in `16+x=3y`, we get `x=24-16=8`. Clearly, `x=8` and `y=8` also satify `7y=56` and `5y=32+x`. Hence,`x=8` and `y=8`. We have
`|A|=|(3,1),(7,5)|=8 ne 0`
So, A is invertible.
Putting `x=8, y=8` in `A^(2)+ xI=yA`, we get
`A^(2)+8I=8A`
`implies A^(-1) (A^(2)+8I)=8A^(-1) A`
`A^(-1) A^(2)+8A^(-1)I=8A^(-1) A`
`A+8A^(-1)=8I`
`[ :' A^(-1) A^(2)=(A^(-1) A)A=IA=A, A^(-1)I=A^(-1) and A^(-1) A=I]`
`8A^(-1)=8I-A`
or `A^(-1)=1/8 (8I-A)=1/8 {[(8,0),(0,8)]-[(3,1),(7,5)]}`
`=1/8 [(8-3,0-1),(0-7,8-5)]=1/8 [(5,-1),(-7,3)]=[(5//8,-1//8),(-7//8,3//8)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[3175], find x and y so that A^(2)+xI=yA

For the matrix A=[{:(3,1),(7,5):}] . Find 'x' and 'y' so that A^(2)+xI=yA . Hence find A^(-1) .

If A=[{:(3,1),(7,5):}] , find x and y such that A^(2)+xI=yA.

5) 3x-4y=-7;5x-2y=0 find x and y

If (2x + 3,y-1) =(3,5) , then find x and y.

If (2x+y,7)=(5,y-3) then find x and y

For the symmetric matrix, A=[(2,x,4),(5,3,8),(4,y,9)] find the values of 'x' and 'y'

Find the values of x,y,z if the matrix A=[(0,3y,z),(x,y,-z),(x,-y,z)] satisfy the equation A'A=I .

Find x and y i the matrix A= 1/3 [[1,2,2],[2,1,-2],[x,2,y]] satisfythe condition A A\'=A\'A=I_3

Use matrix method to solve the equations 5x-7y=2 and 7x-5y=3

CENGAGE-MATRICES-Exercise 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta,...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. Show that the two matrices A, P^(-1) AP have the same characteristic r...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |