Home
Class 12
MATHS
If A=[[cos alpha, -sin alpha] , [sin alp...

If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`alpha=(2pi)/3`

`BAB=A^(-1)`
`implies ABAB=I`
`implies (AB)^(2)=I`
Now,
`AB=[(cos alpha,-sin alpha),(sin alpha,cos alpha)][(cos 2 beta,sin 2 beta),(sin 2 beta,-cos 2 beta)]`
`=[(cos(alpha+2 beta),sin (alpha+2beta)),(sin (alpha+2beta),- cos (alpha +2beta))]`
and `(AB)^(2)=[(cos (alpha+2beta),sin (alpha+2beta)),(sin (alpha+2beta),-cos (alpha+2beta))]xx[(cos(alpha+2beta),sin (alpha+2beta)),(sin (alpha+2beta),-cos (alpha+2beta))]`
`=[(cos^(2)(alpha+2beta)+sin^(2) (alpha+2beta),0),(0,cos^(2) (alpha+2beta)+sin^(2) (alpha+2beta))]`
`=[(1,0),(0,1)]`
`=I`
`BA^(4)B=A^(-1)`
or `A^(4)B=B^(-1)A^(-1)=(AB)^(-1)=AB`
or `A^(4)=A` (1)
Now, `A^(2)=[(cos alpha,-sin alpha),(sin alpha,cos alpha)][(cos alpha,-sin alpha),(sin alpha,cos alpha)]`
`=[(cos 2 alpha,-sin 2 alpha),(sin 2 alpha,cos 2 alpha)]`
and `A^(4)=[(cos 4 alpha,-sin 4 alpha),(sin 4 alpha,cos 4 alpha)]`
Hence, from Eq. (1),
`[(cos 4 alpha,-sin 4 alpha),(sin 4 alpha,cos 4 alpha)]=[(cos alpha,-sin alpha),(sin alpha,cos alpha)]`
or `4alpha=2pi+alpha`
or `alpha=(2pi)/3`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[[cos alpha,-sin alphasin alpha,cos alpha]],B=[[cos2 beta,sin2 betasin alpha,cos alpha]],B=[[cos2 beta,sin2 betasin2 beta,-cos2 beta]] where 0

If A,=[[cos alpha,-sin alphasin alpha,cos alpha]] and B=,[[cos beta,cos alpha]] and B=[[cos beta,-sin betasin beta,cos betasin beta,cos beta]] then show that AB=BA

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

CENGAGE-MATRICES-Exercise 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta,...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. Show that the two matrices A, P^(-1) AP have the same characteristic r...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |