Home
Class 12
MATHS
Using elementary transformation, find th...

Using elementary transformation, find the inverse of the matrix `A=[(a,b),(c,((1+bc)/a))]`.

Text Solution

Verified by Experts

The correct Answer is:
`[((1+bc)/a,-b),(-c,a)]`

`A=[(a,b),(c,((1+bc)/a))]`
We write,
`[(a,b),(c,((1+bc)/a))]=[(1,0),(0,1)]A`
`implies [(1,b/a),(c,((1+bc)/a))]=[(1/a,0),(0,1)]A" "(R_(1) rarr R_(1)/a)`
or `[(1,b/a),(0,1/a)]=[(1/a,0),((-c)/a,1)]A" "(R_(2) rarr R_(2)-cR_(1))`
or `[(1,b/a),(0,1)]=[(1/a,0),(-c,a)]A" "(R_(2)=aR_(2))`
or `[(1,0),(0,1)]=[((1+bc)/a,-b),(-c,a)]A" "(R_(1) rarr R_(1)- b/a R_(2))`
`implies A^(-1)=[((1+bc)/a,-b),(-c,a)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations,find the inverse of the matrix

Using elementary transformations find the inverse of the matrix A=[(2,1),(4,7)]

Using elementary transformation, find the inverse of the given matrix.

Using elementary transformations,find the inverse of the matrix [[2,17,4]]

Using elementary transformations,find the inverse of the matrix [[3,15,2]]

Using elementary transformations,find the inverse of the matrix [[2,35,7]]

Using elementary transformations,find the inverse of the matrix [[4,53,4]]

Using elementary transformations,find the inverse of the matrix [[1,-12,3]]

Using elementary transformations,find the inverse of the matrix ,[[2,11,1]]

Using elementary transformations,find the inverse of the matrix ,[[1,32,7]]

CENGAGE-MATRICES-Exercise 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta,...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. Show that the two matrices A, P^(-1) AP have the same characteristic r...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |