Home
Class 12
MATHS
lim(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)...

` lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4))` is

A

4

B

`8sqrt2`

C

8

D

`4sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

lim_(x to pi/4)(tan^3x-tanx)/(cos(pi/4+x))=alpha and lim_(x to 0)(cosx)^cotx=beta .If alpha and beta are the roots of equation ax^2+bx-4 then ordered pair (a,b) is

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

The value of lim_(xto pi//2)(cot x-cosx)/(pi-2x)^3 is

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

The value of lim_(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "