Home
Class 12
MATHS
lim(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sq...

`lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x))` is equal to

A

`1/(sqrt(2pi))`

B

`sqrtpi/2`

C

`sqrt(2/pi)`

D

`sqrtpi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1^-} \frac{\sqrt{\pi} - \sqrt{2 \sin^{-1} x}}{\sqrt{1 - x}} \), we can apply L'Hôpital's Rule since we have an indeterminate form of type \( \frac{0}{0} \). ### Step 1: Identify the limit form As \( x \to 1^- \): - \( \sin^{-1}(1) = \frac{\pi}{2} \) - Thus, \( \sqrt{2 \sin^{-1}(x)} \to \sqrt{2 \cdot \frac{\pi}{2}} = \sqrt{\pi} \) - Therefore, the numerator \( \sqrt{\pi} - \sqrt{2 \sin^{-1} x} \to 0 \) - The denominator \( \sqrt{1 - x} \to 0 \) This confirms that we have the \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and denominator: **Numerator:** \[ \frac{d}{dx} (\sqrt{\pi} - \sqrt{2 \sin^{-1} x}) = 0 - \frac{1}{2\sqrt{2 \sin^{-1} x}} \cdot \frac{2}{\sqrt{1 - x^2}} = -\frac{1}{\sqrt{2 \sin^{-1} x} \cdot \sqrt{1 - x^2}} \] **Denominator:** \[ \frac{d}{dx} (\sqrt{1 - x}) = \frac{-1}{2\sqrt{1 - x}} \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 1^-} \frac{-\frac{1}{\sqrt{2 \sin^{-1} x} \cdot \sqrt{1 - x^2}}}{-\frac{1}{2\sqrt{1 - x}}} = \lim_{x \to 1^-} \frac{2\sqrt{1 - x}}{\sqrt{2 \sin^{-1} x} \cdot \sqrt{1 - x^2}} \] ### Step 4: Simplify the limit As \( x \to 1^- \): - \( \sin^{-1}(x) \to \frac{\pi}{2} \) - \( \sqrt{2 \sin^{-1}(x)} \to \sqrt{\pi} \) - \( \sqrt{1 - x} \to 0 \) - \( \sqrt{1 - x^2} \to 0 \) Thus, we can substitute these values into the limit: \[ \lim_{x \to 1^-} \frac{2\sqrt{1 - x}}{\sqrt{\pi} \cdot 0} \to \text{undefined} \] ### Step 5: Re-evaluate using Taylor expansion Instead of directly substituting, we can use the Taylor expansion around \( x = 1 \): - \( \sin^{-1}(x) \approx \frac{\pi}{2} - \sqrt{2(1-x)} \) - Thus, \( 2 \sin^{-1}(x) \approx \pi - 2\sqrt{2(1-x)} \) Now substituting this back: \[ \sqrt{2 \sin^{-1}(x)} \approx \sqrt{\pi - 2\sqrt{2(1-x)}} \] As \( x \to 1^- \), we can find the limit: \[ \sqrt{\pi} - \sqrt{2 \sin^{-1}(x)} \approx \sqrt{\pi} - \sqrt{\pi - 2\sqrt{2(1-x)}} \approx \frac{2\sqrt{2(1-x)}}{2\sqrt{\pi}} = \frac{\sqrt{2(1-x)}}{\sqrt{\pi}} \] ### Step 6: Substitute back into the limit Now substituting back into our limit: \[ \lim_{x \to 1^-} \frac{\frac{\sqrt{2(1-x)}}{\sqrt{\pi}}}{\sqrt{1-x}} = \lim_{x \to 1^-} \frac{\sqrt{2}}{\sqrt{\pi}} = \frac{\sqrt{2}}{\sqrt{\pi}} \] ### Final Answer Thus, the limit evaluates to: \[ \frac{\sqrt{2}}{\sqrt{\pi}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

lim_(x to 1-) (sqrtpi-sqrt(2 sin^(-1) x))/sqrt(1-x) is equal to

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

lim_(x rarr1^(-))(sqrt(pi)-sqrt(2sin^(-1)x))/(sqrt(1-x))=(A)sqrt((2)/(pi))(B)sqrt((pi)/(2))(C)(1)/(pi)(D)sqrt((1)/(pi))

lim_(x rarr(-1)^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(x+1)) is equal to

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

lim_(x rarr0)(tan x)/(sqrt(1+sin x)-sqrt(1-sin x)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to