Home
Class 12
MATHS
Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(...

Solve `2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))`

A

`x in [1/sqrt2, 1]`

B

`x in [0, 1]`

C

`x in [1/sqrt3, 1]`

D

`x in [1/sqrt5, 1]`

Text Solution

Verified by Experts

The correct Answer is:
A

Let x = cos y, where `0 le y le pi, |x| le 1`
`2 cos^(-1) x = sin^(-1) (2 x sqrt(1 -x^(2)))`...(i)
`rArr 2 cos^(-1) (cos y) = sin^(-1) (2 cos y sqrt(1 - cos^(2) y))`
`= sin^(-1) (2 cos y sin y)`
`= sin^(-1) (sin 2 y)`
`rArr sin^(-1) (sin 2 y) = 2y " for " -pi//2 le y le pi//4`
and `2 cos^(-1) (cos y) = 2y " for " 0 le y le pi`
Thus, Eq. (i) holds only when
`y in [0, pi//4]`
`rArr x in [1//sqrt2, 1]`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve 2cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))

3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

Solve sin^(-1) x cos^(-1) x = sin^(-1) (3x -2)

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

(1) / (2) cos ^ (- 1) x = sin ^ (- 1) sqrt ((1-x) / (2)) = cos ^ (- 1) sqrt ((1 + x) / (2 )) = (tan ^ (- 1) (sqrt (1-x ^ (2)))) / (1 + x)

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Question Bank
  1. Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

    Text Solution

    |

  2. If alpha and beta are the two zeroes of the equation 3 cos ^-1(...

    Text Solution

    |

  3. If log pi x gt 0 then the absolute value of log 1/pi(sin ^-1 (2 x)/...

    Text Solution

    |

  4. If sin ^-1(sin 4)^-1+cos ^-1(cos 8)+tan ^-1(tan 6)+cot ^-1 .(cot 10)=...

    Text Solution

    |

  5. Total number of ordered pairs (x, y) satisfying |y|=cos x and y=sin...

    Text Solution

    |

  6. Find the number of points x in[-pi/2, (3 pi)/2] satisfying the equ...

    Text Solution

    |

  7. If the equation sin ^-1(x^2+x+1)+cos ^-1(lambda x+1)=pi/2 has exactly ...

    Text Solution

    |

  8. Number of values of x satisfying the equation cos ^-1(x^2-.5 x+6)=...

    Text Solution

    |

  9. Given f(x)=tan ^-1(cot x)+cot ^-1(tan x),(pi/2 lt x lt pi) , then ...

    Text Solution

    |

  10. If all the roots of the equation x^3-3 x=0 satisfy the equation (alpha...

    Text Solution

    |

  11. If the solution set of inequality (cosec^-1 x^2)-2 cosec^-1 x ge pi/6(...

    Text Solution

    |

  12. Find the sum of the values of x satisfying the equation tan ^-1((2 ...

    Text Solution

    |

  13. Number of values of x satisfying the equation cos ((4 pi)/3-cos ^-1...

    Text Solution

    |

  14. If the value of expression sin ^-1(sin 2013^(circ))+cos ^-1(cos.2013^...

    Text Solution

    |

  15. Let f:[0,3 pi] rarr[-pi/2, pi/2] be defined by f(x)=sin ^-1(sin x)...

    Text Solution

    |

  16. function f(x)=(arccot x/2+operatornamearccot x/3)/(arctan x/2+arctan ...

    Text Solution

    |

  17. If m and M are the least and the greatest value of (cos ^-1 x)^2...

    Text Solution

    |

  18. Solution of the equation cot (overset (4) underset (r =1) sum cot ^-1...

    Text Solution

    |

  19. If the equation sin ^-1 x=cosec^-1 x is satisfied for alpha and beta, ...

    Text Solution

    |

  20. Let f(x)=sin ^5 x-cos ^2 x and g(x)=cot ^-1(x^2+x+1) . Number of...

    Text Solution

    |

  21. The value of 3 sin (1/2 arc cos 1/9) +4 cos (1/2 arc cos 1/8) equal t...

    Text Solution

    |