Home
Class 12
MATHS
Find the sum cosec^(-1) sqrt10 + cosec^(...

Find the sum `cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))`

Text Solution

Verified by Experts

Let `theta = cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))`
or `cosec^(-2) theta =(n^(2) + 1) (n^(2) + 2n + 2)`
`=(n^(2) + 1)^(2) + 2n (n^(2) + 1) + n^(2) + 1`
`= (n^(2) + n + 1)^(2) + 1`
`rArr cot^(2) theta = (n^(2) + n + 1)^(2)`
`rArr tan theta = (1)/(n^(2) + n+ 1) = ((n+1) - n)/(1 + (n + 1) n)`
`rArr theta = tan^(-1) [((n+ 1) -n)/(1 + (n + 1)n)] = tan^(-1) (n + 1) - tan^(-1) n`
Thus, sum of `n` terms of the given series
`= (tan^(-1) 2 - tan^(-1)1) + (tan^(-1) 3 - tan^(-1)2)+ (tan^(-1) 4 - tan^(-1) 3) + ...+ (tan^(-1) (n + 1) - tan^(-1) n)`
`= tan^(-1) (n + 1) - pi//4`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the sum csc^(-1)sqrt(10)+csc^(-1)sqrt(50)+csc^(-1)sqrt(170)+...+csc^(-1)sqrt((n^(2)+1)(n^(2)+2n+2))

cosec"^(-1)(-sqrt(2))

cosec^(-1)(-sqrt(2))+cot^(-1)(sqrt(3))=

If the sum of n terms of the series S_n=cosec^-1sqrt10+cosec^-1sqrt50+cosec^-1sqrt170+...........+cosec^-1sqrt((n^2+1)(n^2+2n+2). The value of [lim_(x->oo)s_n] is

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

cot^(-1)3+cosec^(-1)sqrt(5)=

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^(-1)(-2)

sqrt("cosec"(x^(3)+1))

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Question Bank
  1. Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(1...

    Text Solution

    |

  2. If alpha and beta are the two zeroes of the equation 3 cos ^-1(...

    Text Solution

    |

  3. If log pi x gt 0 then the absolute value of log 1/pi(sin ^-1 (2 x)/...

    Text Solution

    |

  4. If sin ^-1(sin 4)^-1+cos ^-1(cos 8)+tan ^-1(tan 6)+cot ^-1 .(cot 10)=...

    Text Solution

    |

  5. Total number of ordered pairs (x, y) satisfying |y|=cos x and y=sin...

    Text Solution

    |

  6. Find the number of points x in[-pi/2, (3 pi)/2] satisfying the equ...

    Text Solution

    |

  7. If the equation sin ^-1(x^2+x+1)+cos ^-1(lambda x+1)=pi/2 has exactly ...

    Text Solution

    |

  8. Number of values of x satisfying the equation cos ^-1(x^2-.5 x+6)=...

    Text Solution

    |

  9. Given f(x)=tan ^-1(cot x)+cot ^-1(tan x),(pi/2 lt x lt pi) , then ...

    Text Solution

    |

  10. If all the roots of the equation x^3-3 x=0 satisfy the equation (alpha...

    Text Solution

    |

  11. If the solution set of inequality (cosec^-1 x^2)-2 cosec^-1 x ge pi/6(...

    Text Solution

    |

  12. Find the sum of the values of x satisfying the equation tan ^-1((2 ...

    Text Solution

    |

  13. Number of values of x satisfying the equation cos ((4 pi)/3-cos ^-1...

    Text Solution

    |

  14. If the value of expression sin ^-1(sin 2013^(circ))+cos ^-1(cos.2013^...

    Text Solution

    |

  15. Let f:[0,3 pi] rarr[-pi/2, pi/2] be defined by f(x)=sin ^-1(sin x)...

    Text Solution

    |

  16. function f(x)=(arccot x/2+operatornamearccot x/3)/(arctan x/2+arctan ...

    Text Solution

    |

  17. If m and M are the least and the greatest value of (cos ^-1 x)^2...

    Text Solution

    |

  18. Solution of the equation cot (overset (4) underset (r =1) sum cot ^-1...

    Text Solution

    |

  19. If the equation sin ^-1 x=cosec^-1 x is satisfied for alpha and beta, ...

    Text Solution

    |

  20. Let f(x)=sin ^5 x-cos ^2 x and g(x)=cot ^-1(x^2+x+1) . Number of...

    Text Solution

    |

  21. The value of 3 sin (1/2 arc cos 1/9) +4 cos (1/2 arc cos 1/8) equal t...

    Text Solution

    |