Home
Class 12
MATHS
If x gt y gt z gt 0, then find the value...

If `x gt y gt z gt 0`, then find the value of `"cot"^(-1) (xy + 1)/(x - y) + "cot"^(-1)(yz + 1)/(y - z) + "cot"^(-1)(zx + 1)/(z - x)`

A

`pi`

B

`pi/2`

C

`pi/3`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we need to evaluate the expression: \[ \cot^{-1} \left( \frac{xy + 1}{x - y} \right) + \cot^{-1} \left( \frac{yz + 1}{y - z} \right) + \cot^{-1} \left( \frac{zx + 1}{z - x} \right) \] ### Step 1: Rewrite each term using cotangent identity Using the identity for the cotangent of the difference of two angles, we can express each term in the form of an inverse tangent function. The identity states that: \[ \cot^{-1}(a) = \tan^{-1}\left(\frac{1}{a}\right) \] Thus, we can rewrite each term as follows: \[ \cot^{-1} \left( \frac{xy + 1}{x - y} \right) = \tan^{-1} \left( \frac{x - y}{xy + 1} \right) \] Similarly, we can rewrite the other two terms: \[ \cot^{-1} \left( \frac{yz + 1}{y - z} \right) = \tan^{-1} \left( \frac{y - z}{yz + 1} \right) \] \[ \cot^{-1} \left( \frac{zx + 1}{z - x} \right) = \tan^{-1} \left( \frac{z - x}{zx + 1} \right) \] ### Step 2: Combine the terms Now we can combine these terms: \[ \tan^{-1} \left( \frac{x - y}{xy + 1} \right) + \tan^{-1} \left( \frac{y - z}{yz + 1} \right) + \tan^{-1} \left( \frac{z - x}{zx + 1} \right) \] ### Step 3: Use the tangent addition formula We can use the tangent addition formula: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left( \frac{a + b}{1 - ab} \right) \] We will apply this formula iteratively to combine the terms. ### Step 4: Apply the addition formula Let: \[ A = \tan^{-1} \left( \frac{x - y}{xy + 1} \right) \] \[ B = \tan^{-1} \left( \frac{y - z}{yz + 1} \right) \] \[ C = \tan^{-1} \left( \frac{z - x}{zx + 1} \right) \] First, combine \(A\) and \(B\): \[ A + B = \tan^{-1} \left( \frac{\frac{x - y}{xy + 1} + \frac{y - z}{yz + 1}}{1 - \frac{(x - y)(y - z)}{(xy + 1)(yz + 1)}} \right) \] Then, add \(C\) to the result. ### Step 5: Simplify the expression After combining all three angles, we notice that the terms will cancel out due to the cyclic nature of the variables \(x\), \(y\), and \(z\). ### Step 6: Conclusion The final result simplifies to: \[ A + B + C = 0 \] Thus, the value of the original expression is: \[ \boxed{0} \]

To solve the given problem step by step, we need to evaluate the expression: \[ \cot^{-1} \left( \frac{xy + 1}{x - y} \right) + \cot^{-1} \left( \frac{yz + 1}{y - z} \right) + \cot^{-1} \left( \frac{zx + 1}{z - x} \right) \] ### Step 1: Rewrite each term using cotangent identity Using the identity for the cotangent of the difference of two angles, we can express each term in the form of an inverse tangent function. The identity states that: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x>y>z>0, then find the value of cot^(-1)(xy+1)/(x-y)+cot^(-1)(yz+1)/(zy-z)+cot^(-1)(zx+1)/(z-x)

If x gt y gt 0 , then find the value of tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x gt 0, y gt 0 then minimum value of (x+y)(1/x+ 1/y) is

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

If a^(x)=b^(y)=c^(z) and abc=1 then find the value of xy+yz+zx

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Question Bank
  1. If x gt y gt z gt 0, then find the value of "cot"^(-1) (xy + 1)/(x - y...

    Text Solution

    |

  2. If alpha and beta are the two zeroes of the equation 3 cos ^-1(...

    Text Solution

    |

  3. If log pi x gt 0 then the absolute value of log 1/pi(sin ^-1 (2 x)/...

    Text Solution

    |

  4. If sin ^-1(sin 4)^-1+cos ^-1(cos 8)+tan ^-1(tan 6)+cot ^-1 .(cot 10)=...

    Text Solution

    |

  5. Total number of ordered pairs (x, y) satisfying |y|=cos x and y=sin...

    Text Solution

    |

  6. Find the number of points x in[-pi/2, (3 pi)/2] satisfying the equ...

    Text Solution

    |

  7. If the equation sin ^-1(x^2+x+1)+cos ^-1(lambda x+1)=pi/2 has exactly ...

    Text Solution

    |

  8. Number of values of x satisfying the equation cos ^-1(x^2-.5 x+6)=...

    Text Solution

    |

  9. Given f(x)=tan ^-1(cot x)+cot ^-1(tan x),(pi/2 lt x lt pi) , then ...

    Text Solution

    |

  10. If all the roots of the equation x^3-3 x=0 satisfy the equation (alpha...

    Text Solution

    |

  11. If the solution set of inequality (cosec^-1 x^2)-2 cosec^-1 x ge pi/6(...

    Text Solution

    |

  12. Find the sum of the values of x satisfying the equation tan ^-1((2 ...

    Text Solution

    |

  13. Number of values of x satisfying the equation cos ((4 pi)/3-cos ^-1...

    Text Solution

    |

  14. If the value of expression sin ^-1(sin 2013^(circ))+cos ^-1(cos.2013^...

    Text Solution

    |

  15. Let f:[0,3 pi] rarr[-pi/2, pi/2] be defined by f(x)=sin ^-1(sin x)...

    Text Solution

    |

  16. function f(x)=(arccot x/2+operatornamearccot x/3)/(arctan x/2+arctan ...

    Text Solution

    |

  17. If m and M are the least and the greatest value of (cos ^-1 x)^2...

    Text Solution

    |

  18. Solution of the equation cot (overset (4) underset (r =1) sum cot ^-1...

    Text Solution

    |

  19. If the equation sin ^-1 x=cosec^-1 x is satisfied for alpha and beta, ...

    Text Solution

    |

  20. Let f(x)=sin ^5 x-cos ^2 x and g(x)=cot ^-1(x^2+x+1) . Number of...

    Text Solution

    |

  21. The value of 3 sin (1/2 arc cos 1/9) +4 cos (1/2 arc cos 1/8) equal t...

    Text Solution

    |