Home
Class 12
MATHS
Express sin^(-1).(sqrtx)/(sqrt(x + a)) a...

Express `sin^(-1).(sqrtx)/(sqrt(x + a))` as a function of `tan^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1) (sqrt((x)/(a)))`

Putting `x = a tan^(2) theta`
`:. Sin.^(-1) (sqrtx)/(sqrt(x + a) = sin^(-1) (sqrta sqrt(tan^(2)theta))/(sqrt(a tan^(2) theta + a))`
`= sin.^(-1) (sqrta tan theta)/(sqrta sec theta)`
`= sin^(-1) sin theta = theta = tan^(-1) (sqrt((x)/(a)))`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(x+1)+sqrtx)

1/(sqrt(x+1) - sqrtx)

1/(sqrt(x+1) - sqrtx)

tan^(-1){(sqrtx-x)/(1+x^(3//2))}

Write each of the following in the simplest form: (i) sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0 < x <1 (ii) sin{2tan^(-1)(sqrt((1-x)/(1+x)))}

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}

sin^(-1) (sqrt(x/(x+a))) = tan^(-1) (______).