Home
Class 12
MATHS
solve sin^(-1) (sin 5) gt x^(2) - 4x...

solve `sin^(-1) (sin 5) gt x^(2) - 4x`

Text Solution

Verified by Experts

The correct Answer is:
`2 0 sqrt(9 - 2pi) lt x lt 2 + sqrt(9 - 2pi)`

We have `sin^(-1) (sin 5) gt x^(2) - 4x`
Since, `(3pi)/(2) lt 5 lt (5pi)/(2)`
`:. Sin^(-1) (sin 5) = 5 - 2pi`
`rArr 5 - 2pi gt x^(2) - 4x`
`rArr x^(2) - 4x + 4 lt 9 - 2pi`
`rArr (x - 2)^(2) lt 9 - 2pi`
rArr -sqrt(9 - 2pi) lt x x - 2 lt sqrt(9 - 2pi)`
`rArr 2- sqrt(9 - 2 pi) lt x lt 2 + sqrt(9 - 2 pi)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

If sin^-1(sin 5)gtx^(2)-4x then

sin^(-1)(sin5)>x^(2)-4x holds if

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3

Solve sin^(-1) (sin 6x) = x, x in [0,pi]

"sin"^(-1)("sin" 5)>x^2-4x holds if

solve: sin ^ (- 1) x + sin ^ (- 1) 2x = (pi) / (3)

Solve sin^(-1) (5/x) + sin^(-1)(12/x) = pi/2

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .