Home
Class 12
MATHS
Find the set of value of x for which the...

Find the set of value of x for which the equation `cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3)` holds goods

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} x + \cos^{-1} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right) = \frac{\pi}{3} \), we will follow these steps: ### Step 1: Understand the equation We have two inverse cosine terms that sum up to \( \frac{\pi}{3} \). We can use the property of inverse trigonometric functions to simplify our calculations. ### Step 2: Use the property of cosine Recall that if \( \cos^{-1} a + \cos^{-1} b = \frac{\pi}{3} \), then: \[ a = \cos\left(\frac{\pi}{3} - \cos^{-1} b\right) \] This implies: \[ x = \cos\left(\frac{\pi}{3} - \cos^{-1} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right)\right) \] ### Step 3: Set up the equation Using the cosine addition formula, we can express this as: \[ x = \frac{1}{2} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right) + \frac{\sqrt{3}}{2} \sin\left(\cos^{-1} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right)\right) \] ### Step 4: Simplify the equation To simplify, we can express \( \sin\left(\cos^{-1} y\right) \) as \( \sqrt{1 - y^2} \): \[ y = \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \] Thus, we need to calculate \( 1 - y^2 \). ### Step 5: Solve for \( x \) We can rearrange and solve the resulting equation for \( x \). This may involve squaring both sides and simplifying further. ### Step 6: Find the range of \( x \) Since \( \cos^{-1} \) is defined for \( x \in [-1, 1] \), we will check the values of \( x \) that satisfy this condition. ### Step 7: Verify solutions Finally, we will substitute back the values of \( x \) into the original equation to verify if they satisfy it. ### Final Answer The set of values of \( x \) that satisfy the equation can be determined through the above steps. ---

To solve the equation \( \cos^{-1} x + \cos^{-1} \left( \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right) = \frac{\pi}{3} \), we will follow these steps: ### Step 1: Understand the equation We have two inverse cosine terms that sum up to \( \frac{\pi}{3} \). We can use the property of inverse trigonometric functions to simplify our calculations. ### Step 2: Use the property of cosine Recall that if \( \cos^{-1} a + \cos^{-1} b = \frac{\pi}{3} \), then: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)x+cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then

Find the set of value of 'a' for which the equation 2 cos^(-1) x=a +a^(2) (cos^(-1) x)^(-1) posses a solution.

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

If f(x) =cos^(-1)x+cos^(-1){(x/2+1/2sqrt(3-3x^(2)))} then f(2/3) equals

The true set of values of p for which the equation cos^(-1)((1)/(1+cos^(2)x))=(p pi)/(3) have a solution is

Find the value of x for which 3cos x=x^(2)-8x+19 holds good.