Home
Class 12
MATHS
solve the following equation sec^(-1).(x...

solve the following equation `sec^(-1).(x)/(a) - sec^(-1).(x)/(b) = sec^(-1) b - sec^(-1) a, a ge 1, b ge 1, a!= b`

Text Solution

Verified by Experts

The correct Answer is:
`x = ab`

`sec^(-1).(x)/(a) - sec^(-1).(x)/(b) = sec^(-1) b - sec^(-1) a`
`rArr cos^(-1).(a)/(x) - cos^(-1).(b)/(x) = cos^(-1).(1)/(b) - cos^(-1).(1)/(a)`
`rArr cos^(-1).(a)/(x) + cos^(-1).(1)/(a) = cos^(-1).(b)/(x) - cos^(-1).(1)/(b)`
`rArr cos^(-1) [(1)/(x) - sqrt(1 - (a^(2))/(x^(2))) sqrt(1 - (1)/(a^(2)))] = cos^(-1) [(1)/(x) - sqrt(1 - (b^(2))/(x^(2))) sqrt(1 -(1)/(b^(2)))]`
`rArr (1)/(x) - sqrt(1 - (1)/(a^(2)) - (a^(2))/(x^(2)) + (1)/(x^(2))) = (1)/(x) - sqrt(1 - (b^(2))/(x^(2)) - (1)/(b^(2)) + (1)/(x^(2)))`
`rArr sqrt(1 -(1)/(a^(2)) - (a^(2))/(x^(2)) + (1)/(x^(2))) = sqrt(1 - (1)/(b^(2)) - (b^(2))/(x^(2)) + (1)/(x^(2)))`
`rArr -(1)/(a^(2)) - (a^(2))/(x^(2)) = -(1)/(b^(2)) - (b^(2))/(x^(2))`
`rArr (1)/(b^(2)) - (1)/(a^(2)) = (a^(2) - b^(2))/(x^(2))`
`rArr x^(2) = a^(2) b^(2)`
`:. x = +- ab`
But `x = 0 ab` does not satisfy the given equation
Hence, `x = ab` is the required solution
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve,(sec^(-1))(x)/(a)-(sec^(-1))(x)/(b)=sec^(-1)b-sec^(-1)a

x sec^(-1)x

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?

Solve the equation sec ^(2)2x=1-tan2x

sec^(-1)[sec(-30^(@))] =

Solve the equation sec x=sec(x+pi)

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Domain of sec^(-1)x is

Evaluate each of the following: sec^(-1)((sec(13 pi))/(4))( ii) sec^(-1)((sec(25 pi))/(6))