Home
Class 12
MATHS
If a^(2) + b^(2) = c^(2), c != 0, then f...

If `a^(2) + b^(2) = c^(2), c != 0`, then find the non-zero solution of the equation:
`sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x`

Text Solution

Verified by Experts

The correct Answer is:
`x = +- 1`

`sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x`
`rArr sin^(-1) ((ax)/(c) sqrt(1 - (b^(2) x^(2))/(c^(2))) + (bx)/(c) sqrt(1 - (a^(2) x^(2))/(c^(2)))) = sin^(-1) x`
`rArr (ax)/(c) sqrt(1- (b^(2) x^(2))/(c^(2))) + (bx)/(c) sqrt(1 - (a^(2) x^(2))/(c^(2))) = x`
`rArr (a)/(c) sqrt(1 - (b^(2) x^(2))/(c^(2))) + (b)/(c) sqrt(1 - (a^(2) x^(2))/(c^(2))) =1`
`rArr (a^(2))/(c^(2)) (1 - (b^(2) x^(2))/(c^(2))) + (b^(2))/(c^(2)) (1- (a^(2) x^(2))/(c^(2))) + (2ab)/(c^(2)) sqrt(1 - (a^(2) x^(2))/(c^(2))) sqrt(1- (b^(2) x^(2))/(c^(2))) = 1`
`rArr (a^(2) + b^(2))/(c^(2)) - (2a^(2) b^(2) x^(2))/(c^(4)) + (2ab)/(c^(2)) sqrt(1 - (a^(2) x^(2))/(c^(2))) sqrt(1 - (b^(2) x^(2))/(c^(2))) = 1`
`rArr sqrt(1- (a^(2) x^(2))/(c^(2))) sqrt(1 - (b^(2) x^(2))/(c^(2))) = (abx^(2))/(c^(2))`
`rArr sqrt(c^(2) - a^(2) x^(2)) sqrt(c^(2) - b^(2) x^(2)) = abx^(2)`
`rArr c^(4) - c^(2) (a^(2) + b^(2)) x^(2) + a^(2) b^(2) x^(4) = a^(2) b^(2) x^(4)`
`rArr c^(4) -c^(2) (c^(2)) x^(2) = 0`
`rArr x = +- 1`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Statement -1: If a^(2)+b^(2)=c^(2),c ne 0 then the non zero solution of the equation sin^(-1)((ax)/(c ))+sin^(-1)((bx)/(c))=sin^(-1)x is pm 1,. Statement-2: sin^(-1)x+sin^(-1)y= sin^(-1)(x+y)

The non-zero solution of the equation (a-x^(2))/(bx) - (b-x)/(c) = (c-x)/(b) - (b - x^(2))/(c x) , where b ne 0, c ne 0 is

Let a, b, c be non-zero real roots of the equation x^(3)+ax^(2)+bx+c=0 . Then

The non-zero roots of the equation Delta =|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)|=0 are

The non-zero roots of the equation Delta=|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)|=0 are

(sin^(-1)(ax))/(c)+(sin^(-1)(bx))/(c)=sin^(-1)x where a^(2)+b^(2)=c^(2) and c!=0

y=(sin^(-1)x)^(2)+c is a solution of the differential equation

The number of solution of equation sin^(-1)x+n sin^(-1)(1-x)=(m pi)/(2), wheren >0,m<=0 is 3(b)1(c)2(d) None of these

If alpha,beta are the roots of the equation ax^(2)+bx+c=0, then find the roots of the equation ax^(2)-bx(x-1)+c(x-1)^(2)=0 in term of alpha and beta.