Home
Class 12
MATHS
If cos (theta - alpha) = a and sin(theta...

If `cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2)`, then prove that `cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)`

Text Solution

Verified by Experts

`cos (theta - alpha) = a and sin (theta - beta) = b`
`theta = alpha + cos^(-1) a = beta + sin^(-1) b " " ( :' 0 lt theta - alpha, theta - beta lt pi//2)`
`:. alpha - beta = sin^(-1) b - cos^(-1) a`
`rArr sin (alpha - beta) = sin (sin^(-1) b - cos^(-1) a)`
`rArr sin (alpha - beta) = sin (sin^(-1) b - cos^(-1) a)`
`rArr sin(alpha - beta) = ab - sqrt(1 -b^(2)) sqrt(1 -a^(2))`
`rArr sin (alpha - beta) - ab = - sqrt(1 - b^(2)) sqrt(1- a^(2))`
`rArr sin^(2) (alpha - beta) - 2ab sin (alpha - beta) = 1 - (a^(2) + b^(2))`
`rArr cos^(2) (alpha - beta) + 2 ab sin (alpha - beta) = a^(2) + b^(2)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is

Eliminate theta between a = cos(theta - alpha) , b = sin(theta - beta) and prove that a^(2) -2ab sin(alpha - beta) + b^(2) = cos^(2)(alpha - beta) .

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

If sin(theta+alpha)=a and sin(theta+beta)=b, prove that cos2(alpha-beta)-4ab cos(alpha-beta)=1-2a^(2)-2b^(2)

If sin(theta+alpha)=a,cos^(2)(alpha+beta)=b, then sin(alpha-beta)=