Home
Class 12
MATHS
If x in (0, 1), then find the value of t...

If `x in (0, 1)`, then find the value of `tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)`

`tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))`
`= (pi)/(2) - tan^(-1) ((2x)/(1 - x^(2))) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))`
`= (pi)/(2) - 2tan^(-1) x + 2tan^(-1) x " " ("as " x in (0, 1))`
`= (pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x in (0, 1) , then the value of 2tan^(-1)((1-x^(2))/(2x))+2cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

Prove that: sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))}=1

Prove that: sin[tan^(-1)((1 - x^2)/(2x)) + cos^(-1) ((1 - x^2)/(1 + x^2))] = 1

If x in [1, 0) , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x

The value of tan{(1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))}

If x in [-1, 0) then find the value of cos^(-1) (2x^(2) -1) -2 sin^(-1) x

If x in[-1,0], then find the value of cos^(-1)(2x^(2)-1)-2sin^(-1)x