Home
Class 12
MATHS
If x in [-1, 0) then find the value of c...

If `x in [-1, 0)` then find the value of `cos^(-1) (2x^(2) -1) -2 sin^(-1) x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(2x^2 - 1) - 2 \sin^{-1}(x) \) for \( x \in [-1, 0) \), we can follow these steps: ### Step 1: Simplify \( \cos^{-1}(2x^2 - 1) \) Using the identity: \[ \cos^{-1}(2x^2 - 1) = 2 \cos^{-1}(x) \] This identity holds because \( 2x^2 - 1 = \cos(2\theta) \) where \( \theta = \cos^{-1}(x) \). ### Step 2: Substitute into the expression Now we can substitute this back into the original expression: \[ \cos^{-1}(2x^2 - 1) - 2 \sin^{-1}(x) = 2 \cos^{-1}(x) - 2 \sin^{-1}(x) \] ### Step 3: Factor out the common term We can factor out the 2: \[ = 2 (\cos^{-1}(x) - \sin^{-1}(x)) \] ### Step 4: Use the identity \( \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \) From the identity, we know: \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] Thus, we can substitute: \[ \cos^{-1}(x) - \sin^{-1}(x) = \left(\frac{\pi}{2} - \sin^{-1}(x)\right) - \sin^{-1}(x) = \frac{\pi}{2} - 2\sin^{-1}(x) \] ### Step 5: Substitute back into the expression Now substituting this back, we have: \[ 2 \left(\frac{\pi}{2} - 2\sin^{-1}(x)\right) = \pi - 4\sin^{-1}(x) \] ### Step 6: Evaluate for \( x \in [-1, 0) \) Since \( x \) is in the range of \([-1, 0)\), \( \sin^{-1}(x) \) will yield values in \([-\frac{\pi}{2}, 0)\). Thus, we can conclude that: \[ \cos^{-1}(2x^2 - 1) - 2 \sin^{-1}(x) = \pi - 4\sin^{-1}(x) \] ### Final Result The final expression simplifies to: \[ \pi - 4\sin^{-1}(x) \]

To solve the expression \( \cos^{-1}(2x^2 - 1) - 2 \sin^{-1}(x) \) for \( x \in [-1, 0) \), we can follow these steps: ### Step 1: Simplify \( \cos^{-1}(2x^2 - 1) \) Using the identity: \[ \cos^{-1}(2x^2 - 1) = 2 \cos^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x in[-1,0], then find the value of cos^(-1)(2x^(2)-1)-2sin^(-1)x

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If 2cos x+sin x=1, then find the value of 7cos x+6sin x

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

If cos(2sin^(-1)x)=(1)/(9), then find the values of x.

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x