Home
Class 12
MATHS
If A(x1,y1),B(x2,y2) and C(x3,y3) are th...

If `A(x_1,y_1),B(x_2,y_2) and C(x_3,y_3)` are the vertices of traingle ABC and `x_(1)^(2)+y_(1)^(2)=x_(2)^(2)+y_(2)^(2)=x_3^(2)+y_(3)^(2)`, then show that `x_1 sin2A+x_2sin2B+x_3sin2C=y_1sin2A+y_2sin2B+y_3sin 2C=0`.

Text Solution

Verified by Experts

Since `x_(1)^(2)+y_(1)^2=x_(2_^2=x_(3)^2`, circumcentre of `DeltaABC` is `(0,0)`.
Now, coordinates of circumcentre are
`((x_1sin2A+x_2sin2B+x_3sin2C)/(sin2A+sin2B+sin2C),(y_1sin2A+y_2sin2b+y_3sin2C)/(sin2A+sin2B+sin2C))=(0,0)`
Therefore,`x_1sin2A+x-2sin2B+x_3sin2C=y_1sin2A+y_2sin2B+y_3sin2C=0`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If A(x_(1),y_(1)),B(x_(2),y_(2)), and C(x_(3),y_(3)) are three non-collinear points such that x_(1)^(2)+y_(1)^(2)=x_(2)^(2)+y_(2)^(2)=x_(3)^(2)+y_(3)^(2), then prove that x_(1)sin2A+x_(2)sin2B+x_(3)sin2C=y_(1)sin2A+y_(2)sin2B+y_(3)sin2C=0

If A(x_(1),y_(1)),B(x_(2),y_(2)),C(x_(3),y_(3)) are the vertices of the triangle then show that:'

If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are vertices of equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then

If A(3x_(1),3y_(1)),B(3x_(2),3y_(2)),C(3x_(3),3y_(3)) are vertices of a triangle with orthocentre H at (x_(1)+x_(2)+x_(3),y_(1)+y_(2)+y_(3)) then the /_ABC=

If A(x_(1),y_(1)),B(x_(2),y_(2)) and C(x_(3),y_(3)) are the vertices of a triangle then excentre with respect to B is

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

if (x_ (1), y_ (1)), (x_ (2), y_ (2)), (x_ (3), y_ (3)) are vertices equilateral triangle such that (x_ (1) -2) ^ (2) + (y_ (1) -3) ^ (2) = (x_ (2) -2) ^ (2) + (y_ (2) -3) ^ (2) = (x_ (3) - 2) ^ (2) + (y_ (3) -3) ^ (2) then x_ (1) + x_ (2) + x_ (3) +2 (y_ (1) + y_ (2) + y_ (3) ))

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

If the points (x_(1),y_(1)),(x_(2),y_(2)), and (x_(3),y_(3)) are collinear show that (y_(2)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0