Home
Class 12
MATHS
If DeltaABC having vertices A(acostheta1...

If `DeltaABC` having vertices `A(acostheta_1, asintheta_1), B(acostheta_2, asintheta_2), and C(acostheta_3, asintheta_3)` are equilateral triangle, then prove that `cos theta_1 + costheta_2 + cos theta_3 =0 and sintheta_1 + sintheta_2 + sintheta_3 =0`

Text Solution

Verified by Experts

The distance of given vertices` A(acostheta_1,a sintheta_1), B(acostheta_2,a sintheta_2)`, and `C(acostheta_3,a sintheta_3)` from the origin (0,0) is a .
Hence, the circumcenter of the triangle is (1,0). Also,in an equilateral triangle, the controid coincides with the circumcenter. We have `(acostheta-1+acostheta_2+acostheta_3)/(3)=0`
`(asintheta-1+asintheta_2+asintheta_3)/(3)=0`
or `costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta=0`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If DeltaABC having vertices A (acostheta_1, asintheta_1), B (acostheta_2, asintheta_2), and C (acostheta_3, asintheta_3) are equilateral triangle, then prove that cos theta_1 + costheta_2 + cos theta_3 = 0 and sintheta_1 + sintheta33

If (a costheta_1,asintheta_1),(acostheta_2,a sintheta_2) , and (acostheta_3a sintheta_3) represent the vertces of an equilateral triangle inscribed in a circle. Then.

If : cos theta+sintheta=1, "then" : cos theta-sintheta

If sin theta_1 + sin theta_2 + sintheta_3 =3 then cos theta_1 + cos theta_2 + costheta_3 is equal to

If sintheta + cos theta =1 , then the value of sintheta - costheta is:

If cos^2theta-sintheta=1/4 then sintheta=?

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .

Prove that- 1-cos^2theta/(1+sintheta)=sintheta