Home
Class 12
MATHS
The vertices of a triangle are A(x1,x1ta...

The vertices of a triangle are `A(x_1,x_1tantheta_1),B(x_2, x_2tantheta_2),` and `C(x_3, x_3tantheta_3)dot` If the circumcenter of ` A B C` coincides with the origin and `H(a , b)` is the orthocentre, show that `a/b=(costheta_1+costheta_2+costheta_3)/(sintheta_1+sintheta_2+sintheta_3)`

Text Solution

Verified by Experts

The correct Answer is:
NA

Since the circumcenter is at the origin, the orthocenter is
`x_1+x_2+x_3,x_1tantheta_1+x_2tantheta_2+x_3tantheta_3)`
`therefore a=x_1 +x_2+x_3`
and `b=x_1tantheta_1+x_2tantheta_2+x_3tantheta_3`
Also `x_1^(2)+x_1^(2) tantheta_1^(2) =x_2^(2)+x_2^(2)tan theta_2^(2)=x_3^(2)=x_3^(2)tan theta_3^(2)`
or `x_1sec theta_1=x_2sec theta_2=x_3sec theta_3=lambda` (say)
Now, `(a)/(b) =(x_1+x_2+x_3)/(x_1tantheta_1+x_2tan theta_2+x_3tantheta_3)`
`=(lambdacostheta_1+lambdatheta_2+lambdatheta_3)/(lambdacostheta_1thantheta_1+ lambdacostheta_2tantheta_2+lambdacostheta_2tan theta_3)`
`=(costheta_1+costheta_2+costheta_3)/(sintheta_1+sintheta+sintheta_3)` .
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are A(x_1, x_1, tan theta_1), B(x_2, x_2, tan theta_2) and C(x_3, x_3, tan theta_3). If the circumcentre coincides with origin then

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

Show that : Costheta /( 1 - Sintheta ) + Costheta /( 1 + Sintheta ) = 2/Costheta

Prove that (Sintheta)/(1+Costheta)+(1+Costheta)/(Sintheta)=2"Cosec"theta

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .