Home
Class 12
MATHS
The vertices of a triangle are [a t1t2,a...

The vertices of a triangle are `[a t_1t_2,a(t_1 +t_2)]`, `[a t_2t_3,a(t_2 +t_3)]`, `[a t_3t_1,a(t_3 +t_1)]` Then the orthocenter of the triangle is (a) `(-a, a(t_1+t_2+t_3)-at_1t_2t_3)` (b) `(-a, a(t_1+t_2+t_3)+at_1t_2t_3)` (c) `(a, a(t_1+t_2+t_3)+at_1t_2t_3)` (d) `(a, a(t_1+t_2+t_3)-at_1t_2t_3)`

Text Solution

Verified by Experts

The correct Answer is:
`(-a,a(t_1+t_2+t_3)+at_1t_2t_3)`


We know that orthocenter of `Delta` is point of concurrencyof altitudes. Let orthocenter be `H(x,y)`.
Now, slope of `BC=((t_1+t_3)-a(t_2+t_3))/(at_1t_3-at_2t_3)`
`BC=((t_1+t_3-t_2-t_3))/(at_1(t_1-t_2))=(1)/(t_3)`
`therefore` Slope of` AD =-t_3`
Also, slope of AD=Slope of `AH=(y-(t_1+t_2))/(x-at_1t_2)=-t_3`
or `xt_3=at_1t_2t_3+a(t_1+t_2)`
Similarly , by symmetry form `AC botBE`, we get (1)
`xt_1+y=at_1t_2t_3+a(t_2_t_3)` (2)
Solving (1) and (2),we get
`x=-a,y=a(t_1+t_2+t_3_+at_1t_2t_3`
`therefore` Orthocenter is `H(-a,a(t_1+t_2+t_3)+at_1t_2t_3)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [at_(1)t_(2),a(t_(1)+t_(2))] , [at_(2)t_(3),a(t_(2)+t_(3))] , [at_(3)t_(1),a(t_(3)+t_(1))] . Find the orthocentre of the triangle.

If the orthocentre of the triangle formed by the points t_1,t_2,t_3 on the parabola y^2=4ax is the focus, the value of |t_1t_2+t_2t_3+t_3t_1| is

Prove that the area of the triangle whose vertices are : (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) , (at_(3)^(2),2at_(3)) is a^(2)(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1)) .

Find the are of triangle whose vertex are: (at_(1),(a)/(t_(1)))(at_(2),(a)/(t_(2)))(at_(3),(a)/(t_(3)))

If 3(t-3) = 5(2t + 1) , then t = ?

Prove that the area of the triangle whose vertices are (t,t-2),(t+2,t+2) and (t+3,t) is independent of t.

Prove that the area of the triangle whose vertices are (t,t-2),(t+2,t+2), and (t+3,t) is independent of t