Home
Class 11
MATHS
Let Sn=1+q+q^2 +?+q^n and Tn =1+((q+1)/2...

Let `S_n=1+q+q^2 +?+q^n` and `T_n =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n` If `alpha T_100=^101C_1 +^101C_2 xS_1 +^101C_101 xS_100,` then the value of `alpha` is equal to (A) `2^99` (B) `2^101` (C) `2^100` (D) `-2^100`

A

`2^(100)`

B

200

C

`2^(99)`

D

202

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -1|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|5 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=1+q+q^(2)+?+q^(n) and T_(n)=1+((q+1)/(2))+((q+1)/(2))^(2)+?+((q+1)/(2)) If alpha T_(100)=^(101)C_(1)+^(101)C_(2)xS_(1)+^(101)C_(101)xS_(100), then the value of alpha is equal to (A) 2^(99)(B)2^(101)(C)2^(100) (D) -2^(100)

Let S_k=1+q+q^2+...+q^k and T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k q!=1 then prove that sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n

If P = (101)^(100) and Q = (100)^(101) , then the correct relation is:

If the number of terms in the expansion of (1+x)^(101)(1+x^(2)-x)^(100) is n, then the value of (n)/(25) is euqal to

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If .^nC_0+3.^nC_1+5^nC_2+7^nC_3+ . . .till (n+1) term=2^100*101 then the value of 2[(n-1)/2] where [.] is G.I.F)

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (J-M)
  1. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  2. The value of (.^(21)C(1) - .^(10)C(1)) + (.^(21)C(2) - .^(10)C(2)) + (...

    Text Solution

    |

  3. The sum of the co-efficients of all odd degree terms in the expansion ...

    Text Solution

    |

  4. If the fractional part of the number (2^(403))/(15) is (k)/(15), then ...

    Text Solution

    |

  5. The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 ...

    Text Solution

    |

  6. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  7. If Sigma(r=0)^(25) { ""^(50)Cr.""^(50-r)C(25-r)}=K(""^(50)C(25)) then...

    Text Solution

    |

  8. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |

  9. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  10. Let (x + 10)^(50) + (x - 10)^(50) = a(0) + a(1) x + a(2)X^(2) + ….. +...

    Text Solution

    |

  11. Let Sn=1+q+q^2 +?+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n If...

    Text Solution

    |

  12. A ratio of the 5^(th) term from the beginning and from the end in the...

    Text Solution

    |

  13. The number of irrational terms in expansion (7^(1/5)-3^(1/10))^60 is ...

    Text Solution

    |

  14. The sum of the series 2.""^(20)C0+5.""^(20)C1+8.""^(20)C2+11.""^(20)C(...

    Text Solution

    |

  15. If some three consecutive coefficeints in the binomial expanison of (x...

    Text Solution

    |

  16. If the coefficients of x^(2) and x^(3)are both zero, in the expansion ...

    Text Solution

    |

  17. The smallest natural number n, such that the coefficient of x in the e...

    Text Solution

    |

  18. The cofficient of x^(18) in the product (1 + x) (1 - x)^(1) (1 + x + x...

    Text Solution

    |

  19. If .^(20)C(1)+(2^(2)) .^(20)C(2) + (3^(2)).^(20)C(3) +......+(20^(2))....

    Text Solution

    |

  20. The term independent of x in the expansion of ((1)/(60) - (x^(8))/(81)...

    Text Solution

    |