Home
Class 11
MATHS
The sum of the series 2.""^(20)C0+5.""^(...

The sum of the series `2.""^(20)C_0+5.""^(20)C_1+8.""^(20)C_2+11.""^(20)C_(3)+.........62.^(20)C_20` is equal

A

`2^(24)`

B

`2^(25)`

C

`2^(26)`

D

`2^(23)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( S = 2 \cdot \binom{20}{0} + 5 \cdot \binom{20}{1} + 8 \cdot \binom{20}{2} + 11 \cdot \binom{20}{3} + \ldots + 62 \cdot \binom{20}{20} \), we can follow these steps: ### Step 1: Identify the Pattern The coefficients in the series are \( 2, 5, 8, 11, \ldots, 62 \). We can observe that these coefficients form an arithmetic sequence where the first term \( a = 2 \) and the common difference \( d = 3 \). ### Step 2: General Term of the Coefficients The \( n \)-th term of the arithmetic sequence can be expressed as: \[ a_n = 2 + (n-1) \cdot 3 = 3n - 1 \] Thus, we can rewrite the series as: \[ S = \sum_{n=0}^{20} (3n - 1) \cdot \binom{20}{n} \] ### Step 3: Split the Series We can split the sum into two separate sums: \[ S = \sum_{n=0}^{20} (3n) \cdot \binom{20}{n} - \sum_{n=0}^{20} \binom{20}{n} \] ### Step 4: Evaluate the Second Sum The second sum, \( \sum_{n=0}^{20} \binom{20}{n} \), is known to equal \( 2^{20} \) (by the binomial theorem). ### Step 5: Evaluate the First Sum For the first sum, we can use the identity \( n \cdot \binom{n}{k} = k \cdot \binom{n-1}{k-1} \): \[ \sum_{n=0}^{20} n \cdot \binom{20}{n} = 20 \cdot 2^{19} \] Thus, \[ \sum_{n=0}^{20} 3n \cdot \binom{20}{n} = 3 \cdot 20 \cdot 2^{19} = 60 \cdot 2^{19} \] ### Step 6: Combine the Results Now we can substitute back into our expression for \( S \): \[ S = 60 \cdot 2^{19} - 2^{20} \] ### Step 7: Simplify We can factor out \( 2^{19} \): \[ S = 2^{19} (60 - 2) = 2^{19} \cdot 58 \] ### Step 8: Final Expression Now, we can express \( 58 \) as \( 2 \cdot 29 \): \[ S = 2^{20} \cdot 29 \] ### Conclusion Thus, the sum of the series is: \[ S = 2^{20} \cdot 29 \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -1|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|5 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The sum of the series ""^20C_0+""^20C_1+""^20C_2+...+""^20C_9 is

The sum of the series 20C_(0)-^(20)C_(1)+^(20)C_(2)-^(20)C_(3)+...-...+^(20)C_(10) is:

1.^(20)C_(1)-2.^(20)C_(2)+3.^(20)C_(3)-...-20.^(20)C_(20)

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (J-M)
  1. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  2. The value of (.^(21)C(1) - .^(10)C(1)) + (.^(21)C(2) - .^(10)C(2)) + (...

    Text Solution

    |

  3. The sum of the co-efficients of all odd degree terms in the expansion ...

    Text Solution

    |

  4. If the fractional part of the number (2^(403))/(15) is (k)/(15), then ...

    Text Solution

    |

  5. The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 ...

    Text Solution

    |

  6. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  7. If Sigma(r=0)^(25) { ""^(50)Cr.""^(50-r)C(25-r)}=K(""^(50)C(25)) then...

    Text Solution

    |

  8. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |

  9. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  10. Let (x + 10)^(50) + (x - 10)^(50) = a(0) + a(1) x + a(2)X^(2) + ….. +...

    Text Solution

    |

  11. Let Sn=1+q+q^2 +?+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n If...

    Text Solution

    |

  12. A ratio of the 5^(th) term from the beginning and from the end in the...

    Text Solution

    |

  13. The number of irrational terms in expansion (7^(1/5)-3^(1/10))^60 is ...

    Text Solution

    |

  14. The sum of the series 2.""^(20)C0+5.""^(20)C1+8.""^(20)C2+11.""^(20)C(...

    Text Solution

    |

  15. If some three consecutive coefficeints in the binomial expanison of (x...

    Text Solution

    |

  16. If the coefficients of x^(2) and x^(3)are both zero, in the expansion ...

    Text Solution

    |

  17. The smallest natural number n, such that the coefficient of x in the e...

    Text Solution

    |

  18. The cofficient of x^(18) in the product (1 + x) (1 - x)^(1) (1 + x + x...

    Text Solution

    |

  19. If .^(20)C(1)+(2^(2)) .^(20)C(2) + (3^(2)).^(20)C(3) +......+(20^(2))....

    Text Solution

    |

  20. The term independent of x in the expansion of ((1)/(60) - (x^(8))/(81)...

    Text Solution

    |